
BVS CA-MLC / BVS CA-IGC / mvBlueFOX
Technical Manual

English - Version 3.04

i

1 About this manual 1

1.1 Goal of the manual . 1

1.2 Contents of the manual . 1

2 Imprint 2

3 Legal Notice 4

3.1 Firmware And Device Driver . 4

3.1.1 cJSON . 4

3.1.2 Unity . 4

3.2 Doxygen . 4

3.3 Impact Acquire SDK . 4

4 Revisions 5

5 Symbols and Conventions 6

5.1 Explanation of the warnings . 6

6 Important Information 6

6.1 High-Speed USB design guidelines . 7

6.2 European Union Declaration of Conformity statement . 7

6.3 Legal notice . 11

6.3.1 For customers in the U.S.A. 11

6.3.2 For customers in Canada . 12

6.3.3 Pour utilisateurs au Canada . 12

7 Introduction 12

7.1 Order code nomenclature . 13

7.1.1 mvBlueFOX . 13

7.1.2 mvBlueFOX-M . 14

7.1.3 BVS CA-IGC . 14

7.1.4 BVS CA-MLC . 15

7.1.5 Ordering code samples . 16

7.2 What's inside and accessories . 17

8 Quickstart 18

8.1 System Requirements . 18

8.1.1 Supported Operating Systems . 18

8.2 Installing the Impact Acquire driver . 19

8.2.1 Windows . 19

8.2.2 Linux . 22

8.3 Connecting The Camera . 25

8.4 Driver concept . 25

8.4.1 NeuroCheck Support . 27

8.4.2 VisionPro Support . 27

Generated by Doxygen

ii

8.4.3 HALCON Support . 27

8.4.4 LabVIEW Support . 28

8.4.5 DirectShow Support . 28

8.4.6 Micro-Manager Support . 28

8.5 Relationship between driver, firmware and FPGA file . 28

8.5.1 FPGA . 29

8.5.2 Firmware . 30

8.6 About Settings . 32

8.7 Optimizing USB Performance . 35

8.7.1 Checklist for Windows . 35

8.7.2 Checklist for Linux . 35

8.8 Using USB2 Cameras In A Docker Container . 36

8.8.1 Host Preparation . 36

8.8.2 Building A Docker Image . 37

8.8.3 Starting The Docker Container . 38

8.8.4 Validation . 38

9 Technical Data 38

9.1 Power supply . 38

9.2 Standard version (mvBlueFOX-xxx) . 39

9.2.1 Dimensions and connectors . 39

9.2.2 LED states . 43

9.3 Board-level version (mvBlueFOX-Mxxx) . 43

9.3.1 Dimensions and connectors . 43

9.3.2 LED states . 48

9.3.3 Accessories mvBlueFOX-Mxxx . 48

9.4 Single-board version (BVS CA-MLC) . 50

9.4.1 Typical Power consumption @ 5V . 50

9.4.2 Dimensions and connectors . 51

9.4.3 LED states . 56

9.4.4 Assembly variants . 56

9.5 Single-board version with housing (BVS CA-IGC) . 57

9.5.1 Dimensions and connectors . 57

9.5.2 LED states . 58

9.5.3 Positioning tolerances of sensor chip . 59

9.6 Summary of components . 59

9.6.1 Summary of available digital I/O's . 61

10 Sensor Overview 61

10.1 CCD sensors . 62

10.2 CMOS sensors . 64

10.3 Output sequence of color sensors (RGB Bayer) . 66

10.4 Bilinear interpolation of color sensors (RGB Bayer) . 66

Generated by Doxygen

iii

11 Filters 67

11.1 Hot mirror filter . 67

11.2 Cold mirror filter . 68

11.3 Glass filter . 68

12 GUI tools 69

12.1 Introduction . 69

12.2 ImpactControlCenter . 69

12.3 DeviceConfigure . 69

12.4 IPConfigure . 69

12.5 GigEConfigure . 70

13 HRTC - Hardware Real-Time Controller 71

13.1 Introduction . 71

13.1.1 Operating codes . 71

13.2 How to use the HRTC . 71

14 Developing applications using the Impact Acquire SDK 73

15 DirectShow Interface 74

15.1 Supported Interfaces . 74

15.1.1 C++ Example Code Using the IKsPropertySet Interface 74

15.2 Logging . 76

15.3 Setting up Devices For DirectShow Usage . 76

15.3.1 Registering Devices . 77

15.3.2 Renaming Devices . 79

15.4 DirectShow-based Applications . 80

16 Troubleshooting 82

16.1 Accessing log files . 82

16.1.1 Windows . 82

16.1.2 Linux . 82

16.2 VLC Media Player Issues . 83

16.2.1 Wrong Colors in the VLC Media Player . 83

17 Error code list 84

18 Glossary 100

19 Use Cases 109

19.1 Introducing acquisition / recording possibilities . 110

19.1.1 Generating very long exposure times . 110

19.1.2 Using Video Stream Recording . 111

19.2 Improving the acquisition / image quality . 122

19.2.1 Correcting image errors of a sensor . 122

Generated by Doxygen

iv

19.2.2 Optimizing the color/luminance fidelity of the camera . 131

19.2.3 Working With Gain And Black-Level Values Per Color Channel 140

19.3 Saving data on the device . 148

19.3.1 Creating user data entries . 148

19.4 Working with several cameras simultaneously . 150

19.4.1 Using 2 BVS CA-MLC cameras in Master-Slave mode . 150

19.4.2 Synchronize the cameras to expose at the same time . 155

19.5 Working with HDR (High Dynamic Range Control) . 156

19.5.1 Adjusting sensor of camera models with onsemi MT9V034 156

19.5.2 Adjusting sensor of camera models with onsemi MT9M034 159

19.6 Working with I2C devices . 162

19.6.1 Working with the I2C interface (I2C Control) . 163

19.6.2 Using BVS CA-MLC with motorized lenses (MotorFocusControl) 166

19.7 Working with LUTs . 175

19.7.1 Introducing LUTs . 175

19.8 Working with triggers . 177

19.8.1 Using external trigger with CMOS sensors . 178

19.9 Working with 3rd party tools . 179

19.9.1 Using VLC Media Player . 179

19.9.2 Using USB2 Cameras In A Docker Container . 185

19.10 Working with the Hardware Real-Time Controller (HRTC) . 188

19.10.1 Achieve a defined image frequency (HRTC) . 188

19.10.2 Delay the external trigger signal (HRTC) . 189

19.10.3 Creating double acquisitions (HRTC) . 190

19.10.4 Take two images after one external trigger (HRTC) . 191

19.10.5 Take two images with different expose times after an external trigger (HRTC) 191

19.10.6 Edge controlled triggering (HRTC) . 193

19.10.7 Delay the expose start of the following camera (HRTC) 195

20 Appendix A. Specific Camera / Sensor Data 196

20.1 A.1 CCD . 196

20.1.1 mvBlueFOX-[Model]220 (0.3 Mpix [640 x 480]) . 196

20.1.2 mvBlueFOX-[Model]220a (0.3 Mpix [640 x 480]) . 201

20.1.3 mvBlueFOX-[Model]221 (0.8 Mpix [1024 x 768]) . 206

20.1.4 mvBlueFOX-[Model]223 (1.4 Mpix [1360 x 1024]) . 210

20.1.5 mvBlueFOX-[Model]224 (1.9 Mpix [1600 x 1200]) . 215

20.2 A.2 CMOS . 220

20.2.1 mvBlueFOX-[Model]200w (0.4 Mpix [752 x 480]) . 221

20.2.2 mvBlueFOX-[Model]202a (1.3 Mpix [1280 x 1024]) . 224

20.2.3 BVS CA-[MLC|IGC]-0012V / mvBlueFOX-[MLC|IGC]202v (1.2 Mpix [1280 x 960]) 227

20.2.4 mvBlueFOX-[Model]202b (1.2 Mpix [1280 x 960]) . 231

20.2.5 mvBlueFOX-[Model]202d (1.2 Mpix [1280 x 960]) . 234

Generated by Doxygen

1 About this manual 1

20.2.6 mvBlueFOX-[Model]205 (5.0 Mpix [2592 x 1944]) . 238

21 Appendix B. Product Comparison 242

22 Appendix C. Tested ARM platforms 242

22.1 C.1 ARM64 based devices . 243

22.1.1 NVIDIA Jetson AGX Xavier . 243

22.1.2 NVIDIA Jetson Xavier NX . 245

22.1.3 NVIDIA Jetson Nano . 246

22.1.4 NVIDIA Jetson TX2 . 247

22.1.5 Raspberry Pi Compute Module 4 . 249

22.1.6 i.MX8M Mini . 249

22.2 C.2 ARMhf based devices . 251

22.2.1 Raspberry Pi 4 . 251

1 About this manual

1.1 Goal of the manual

This manual gives you an overview of the BVS CA-MLC / -IGC devices, Balluff's compact USB2 industrial camera
family, its technical data and basic operation of the mvBlueFOX. Programming the device is detailed in a separate
documentation, which will be available in an online format.

1.2 Contents of the manual

At the beginning of the manual, you will get an introduction to the possible usages of the camera. The following
chapters contain general information about the camera including:

• Quickstart followed by

• Technical Data

• Sensor Overview

• Filters

The general information is followed by the description of the

• Software tools for the camera including the tools

• HRTC - Hardware Real-Time Controller shows how to use the FPGA built-in functionality called Hardware
Real-Time Controller (short: HRTC).

• Developing applications using the Impact Acquire SDK

• DirectShow developers documents Balluff's Impact Acquire to DirectShow interface(DirectShow_acquire).

• Troubleshooting shows how to detect damages and other inconveniences.

• Use Cases describes solutions for general tasks and

Generated by Doxygen

2

• A Glossary explains abbreviations and technical terms.

• Appendix A. Specific Camera / Sensor Data contains all data of the sensors like timings, details of operation,
etc.

– A.1 CCD contains all data of the CCD sensors like timings, details of operation, etc.

– A.2 CMOS contains all data of the other CMOS sensors like timings, details of operation, etc.

• Appendix C. Tested ARM platforms contains a list of ARM platforms tested with this product and information
on how to setup these systems for achieving optimal results

2 Imprint

Headquarters DACH Service Center Southern Europe Service Center
Germany Germany Italy

Balluff GmbH
Schurwaldstrasse 9
73765 Neuhausen a.d.F.
Phone +49 7158 173-0
Fax +49 7158 5010
balluff@balluff.de

Balluff GmbH
Schurwaldstrasse 9
73765 Neuhausen a.d.F.
Phone +49 7158 173-370
service.de@balluff.de

Balluff Automation S.R.L.
Corso Cuneo 15
10078 Venaria Reale (Torino)
Phone +39 0113150711
service.it@balluff.it

Eastern Europe Service Center Americas Service Center Asia Pacific Service Center
Poland USA Greater China
Balluff Sp. z o.o.
Ul. Graniczna 21A
54-516 Wrocław
Phone +48 71 382 09 02
service.pl@balluff.pl

Balluff Inc.
8125 Holton Drive
Florence, KY 41042
Toll-free +1 800 543 8390
Fax +1 859 727 4823
service.us@balluff.com

Balluff Automation (Shanghai) Co., Ltd.
No. 800 Chengshan Rd, 8F, Building A,
Yunding International Commercial Plaza
200125, Pudong, Shanghai
Phone +86 400 820 0016
Fax +86 400 920 2622
service.cn@balluff.com.cn

Date

2023

This document assumes a general knowledge of PCs and programming.

Since the documentation is published electronically, an updated version may be available online. For this reason we
recommend checking for updates on the Balluff website.

Balluff cannot guarantee that the data is free of errors or is accurate and complete and, therefore, assumes no
liability for loss or damage of any kind incurred directly or indirectly through the use of the information of this
document.

Balluff reserves the right to change technical data and design and specifications of the described products at any
time without notice.

Generated by Doxygen

mailto:balluff@balluff.de
mailto:service.de@balluff.de
mailto:service.it@balluff.it
mailto:service.pl@balluff.pl
mailto:service.us@balluff.com
mailto:service.cn@balluff.com.cn

2 Imprint 3

Copyright

Balluff GmbH. All rights reserved. The text, images and graphical content are protected by copyright and other
laws which protect intellectual property. It is not permitted to copy or modify them for trade use or transfer.
They may not be used on websites.

• Windows® Vista, Windows® 7, 8, 10, 11 are trademarks of Microsoft, Corp.

• Linux® is a trademark of Linus Torvalds.

• Jetson is a registered trademark of NVIDIA Corporation.

• NVIDIA and Jetson are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other
countries.

• Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

All other product and company names in this document may be the trademarks and tradenames of their
respective owners and are hereby acknowledged.

Generated by Doxygen

4

3 Legal Notice

3.1 Firmware And Device Driver

The firmware running on Balluff/MATRIX VISION devices make use of a couple of third party software packages
that come with various licenses. This section is meant to list all these packages and to give credit to those whose
code helped in the creation of this software:

Note

If this section does not contain any additional information this means that for this particular product family
no third party specific code was used.

3.1.1 cJSON

A slightly modified version of cJSON is used inside some of the modules that eventually build up the firmware.

Copyright (c) 2009 Dave Gamble

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

3.1.2 Unity

A slightly modified version of Unity (https://github.com/ThrowTheSwitch/Unity) is used for unit
testing various modules that eventually build up the firmware.

3.2 Doxygen

Doxygen as well as the doxygen-awesome project have be used to generate the documentation you are just looking
at. Details regarding licenses and versions can be found like described in the Impact Acquire SDK section.

3.3 Impact Acquire SDK

This SDK and its underlying libraries and drivers as well as some of the applications shipped with the Impact Acquire
packages make use of a couple of third party software packages that come with various licenses. For up to date
details on this topic please refer to the corresponding section in one of the SDK's API manuals. Direct links can be
found here: Developing applications using the Impact Acquire SDK .

Generated by Doxygen

https://github.com/ThrowTheSwitch/Unity

4 Revisions 5

4 Revisions

Date Rev. Author Description Driver / Firmware version

07. September 2023 V3.04 LAN Updated S-mount lensholder of
BVS CA-MLC .

01. August 2023 V3.03 LAN Added glass filter wavelengths and
relative quantum efficiency diagram←↩

: Glass filter .
06. December 2022 V3.02 LAN Updated main page .

22. August 2022 V3.01 LAN Removed "L" option of the digital I/Os
(BVS CA-MLC) .

03. May 2021 V3.00 LAN Corrected Symbols and Conventions.

03. February 2021 V2.01 LAN Added BVS CA-[MLC|IGC]-0012V / mvBlueFOX-[MLC|IGC]202v (1.2 Mpix [1280 x 960]).

13. January 2021 V2.00 LAN Separated GUI tools.

Generated by Doxygen

6

5 Symbols and Conventions

Note

This symbol indicates general notes.

5.1 Explanation of the warnings

Always observe the warnings in these instructions and the measures described to avoid hazards. The warnings
used here contain various signal words and are structured as follows:

Attention

SIGNAL WORD
"Type and source of the hazard"

Consequences if not complied with

→ Measures to avoid hazards.

The individual signal words mean:

Attention

Indicates a danger that can lead to damage or destruction of the product.

All due care and attention has been taken in preparing this manual. In view of our policy of continuous product
improvement, however, we can accept no liability for completeness and correctness of the information contained in
this manual. We make every effort to provide you with a flawless product.

In the context of the applicable statutory regulations, we shall accept no liability for direct damage, indirect damage
or third-party damage resulting from the acquisition or operation of a Balluff/MATRIX VISION product. Our liability
for intent and gross negligence is unaffected. In any case, the extend of our liability shall be limited to the purchase
price.

6 Important Information

We cannot and do not take any responsibility for the damage caused to you or to any other equipment
connected to the device. Similarly, warranty will be void, if a damage is caused by not following the
manual.

Handle the device with care. Do not misuse the device. Avoid shaking, striking, etc. The device could
be damaged by faulty handling or shortage.

Use a soft cloth lightly moistened with a mild detergent solution when cleaning the camera.

Never face the camera towards the sun. Whether the camera is in use or not, never aim at the sun or
other extremely bright objects. Otherwise, blooming or smear may be caused.

Generated by Doxygen

6.1 High-Speed USB design guidelines 7

Please keep the camera closed or mount a lens on it to avoid the CCD or the CMOS from getting
dusty.

Clean the CCD/CMOS faceplate with care. Do not clean the CCD or the CMOS with strong or abrasive
detergents. Use lens tissue or a cotton tipped applicator and ethanol.

Never connect two USB cables to the device even if one is only connected to a PC.

The camera is bus powered < 2.5 W.

The device meets IP40 standards.

Using the single-board or board-level versions:

• Handle with care and avoid damage of electrical components by electrostatic discharge (ESD):

– Discharge body static (contact a grounded surface and maintain contact).

– Avoid all plastic, vinyl, and styrofoam (except antistatic versions) around printed circuit
boards.

– Do not touch components on the printed circuit board with your hands or with conductive
devices.

6.1 High-Speed USB design guidelines

If you want to make own High-Speed (HS) USB cables, please pay attention to following design guidelines:

• Route High-Speed (HS) USB signals with a minimum number of vias and sharp edges!

• Avoid stubs!

• Do not cut off power planes VCC or GND under the signal line.

• Do not route signals no closer than 20 ∗ h to the copper layer edge if possible (h means height over the
copper layer).

• Route signal lines with 90 Ohm +- 15% differential impedance.

– 7.5 mil printed circuit board track with 7.5 mil distance result in approx. 90 Ohm @ 110 um height over
GND plane.

– There are other rules when using double-ply printed circuit boards.

• Be sure that there is 20 mil minimum distance between High-Speed USB signal pair and other printed circuit
board tracks (optimal signal quality).

6.2 European Union Declaration of Conformity statement

Generated by Doxygen

8

The device complies with the provision of the following European Directives:

• 2014/30/EU (EMC directive)

• 2014/35/EU (LVD - low voltage directive)

• For EN 61000-6-3:2007, BVS CA-IGC with digital I/O needs the Steward snap-on ferrite
28A0350-0B2 on I/O cable.

• For EN 61000-6-3:2007, BVS CA-MLC with digital I/O needs the Würth Elektronik snap-on
ferrite WE74271142 on I/O cable and copper foil on USB.

Balluff corresponds to the EU guideline WEEE 2002/96/EG on waste electrical and electronic equip-
ment and is registered under WEEE-Reg.-No. DE 25244305.

Generated by Doxygen

6.2 European Union Declaration of Conformity statement 9

Generated by Doxygen

10

Generated by Doxygen

6.3 Legal notice 11

6.3 Legal notice

6.3.1 For customers in the U.S.A.

Class B

Generated by Doxygen

12

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part
15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference
when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate
radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful
interference to radio communications. However there is no guarantee that interferences will not occur in a particular
installation. If the equipment does cause harmful interference to radio or television reception, the user is encouraged
to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.

• Increase the distance between the equipment and the receiver.

• Use a different line outlet for the receiver.

• Consult a radio or TV technician for help.

You are cautioned that any changes or modifications not expressly approved in this manual could void your authority
to operate this equipment. The shielded interface cable recommended in this manual must be used with this
equipment in order to comply with the limits for a computing device pursuant to Subpart B of Part 15 of FCC Rules.

• To be compliant to FCC Class B, mvBlueFOX-IGC requires an I/O cable with an retrofittable ferrite to be used
such as

– Company: Steward Type: 28A0350-0B2

6.3.2 For customers in Canada

This apparatus complies with the Class B limits for radio noise emissions set out in the Radio Interference Regula-
tions.

6.3.3 Pour utilisateurs au Canada

Cet appareil est conforme aux normes classe B pour bruits radioélectriques, spécifiées dans le Règlement sur le
brouillage radioélectrique.

7 Introduction

The BVS CA-MLC / BVS CA-IGC / mvBlueFOX is a compact industrial CCD & CMOS camera solution for any PC
with a Hi-Speed USB (USB 2.0) port. A superior image quality makes it suited for most applications. Integrated
preprocessing like binning reduces the PC load to a minimum. The standard Hi-Speed USB interface guarantees
an easy integration without any additional interface board. Various example application are available.

Figure 1: BVS CA-IGC

Generated by Doxygen

7.1 Order code nomenclature 13

The camera is suitable for the following tasks:

• machine vision

• robotics

• surveillance

• microscopy

• medical imaging

With the name mvBlueFOX-M1xx, the industrial camera mvBlueFOX is also available as a single-board version.

7.1 Order code nomenclature

7.1.1 mvBlueFOX

The mvBlueFOX nomenclature scheme is as follows:

mvBlueFOX - A B - (1) (2) (3) (4)

- A: Sensor model
220: 0.3 Mpix, 640 x 480, 1/4", CCD
220a: 0.3 Mpix, 640 x 480, 1/3", CCD
200w: 0.4 Mpix, 752 x 480, 1/3", CMOS
221: 0.8 Mpix, 1024 x 768, 1/3", CCD
202a: 1.3 Mpix, 1280 x 1024, 1/2", CMOS
223: 1.4 Mpix, 1360 x 1024, 1/2", CCD
224: 1.9 Mpix, 1600 x 1200, 1/1.8", CCD
205: 5.0 Mpix, 2592 x 1944, 1/2.5", CMOS

- B: Sensor color
G: Gray scale version
C: Color version

- (1): Lensholder
1: C-mount with adjustable backfocus (standard)
2: CS-mount with adjustable backfocus
3: S-mount

- (2): Filter
1: IR-CUT (standard)
2: Glass
3: Daylight cut
9: None

More filters on request \n \n
- (3): Case

1: Color blue (standard)
2: Color black, no logo, no label
3: Color blue, no logo, no label
9: None

- (4): Misc
1: None (standard)

Generated by Doxygen

14

7.1.2 mvBlueFOX-M

The mvBlueFOX-M nomenclature scheme is as follows:

mvBlueFOX-M A B - (1) (2) (3) (4)

- A: Sensor model
220: 0.3 Mpix, 640 x 480, 1/4", CCD
220a: 0.3 Mpix, 640 x 480, 1/3", CCD
200w: 0.4 Mpix, 752 x 480, 1/3", CMOS
221: 0.8 Mpix, 1024 x 768, 1/3", CCD
202a: 1.3 Mpix, 1280 x 1024, 1/2", CMOS
223: 1.4 Mpix, 1360 x 1024, 1/2", CCD
224: 1.9 Mpix, 1600 x 1200, 1/1.8", CCD
205: 5.0 Mpix, 2592 x 1944, 1/2.5", CMOS

- B: Sensor color
G: Gray scale version
C: Color version

- (1): Lensholder
1: No holder (standard)
2: C-mount with adjustable backfocus
3: CS-mount with adjustable backfocus
4: S-mount #9031
5: S-mount #9033

- (2): Filter
1: None (standard)
2: IR-CUT
3: Glass
4: Daylight cut

More filters on request \n \n
- (3): Misc

1: None (standard)

- (4): Misc
1: None (standard)

7.1.3 BVS CA-IGC

The BVS CA-IGC nomenclature scheme is as follows:

Sensor Model name MATRIX VISION model name
0.4 Mpix, 752 x 480, 1/3'', CMOS BVS CA-IGC-0004ZG/C mvBlueFOX-IGC200wG/C

1.2 Mpix, 1280 x 960, 1/3'', CMOS mvBlueFOX-IGC202bG/C

1.2 Mpix, 1280 x 960, 1/3'', CMOS mvBlueFOX-IGC202dG/C

1.2 Mpix, 1280 x 960, 1/3'', CMOS BVS CA-IGC-0012VG/C mvBlueFOX-IGC202vG/C

1.3 Mpix, 1280 x 1024, 1/2'', CMOS mvBlueFOX-IGC202aG/C

5.0 Mpix, 2592 x 1944, 1/2.5'', CMOS BVS CA-IGC-0050ZG/C mvBlueFOX-IGC205G/C

Series Sensor Color Options HW Variant CUP/STD

Model name BVS CA-←↩

IGC-
xxxxx G/C - see legend

below
- see legend

below
MATRIX VI-
SION model
name

mvBlueFOX-
IGC

xxx G/C/GE - see legend
below

- see legend
below

- see legend
below

Legend Model name MATRIX VISION model name

Generated by Doxygen

7.1 Order code nomenclature 15

Options

HW Variant (1)(2)(3)(4)(5)(6)

(1): Handling
1: Standard handling

(2): Lensholder
0: None
2: C-mount with adjustable backfocus
4: CS-mount with adjustable backfocus
6: CS-mount without adjustable backfocus
(standard)
9: C-mount without adjustable backfocus
(CS-mount with add. 5 mm extension ring)

(3): Filter
0: None (standard)
1: IR-CUT
2: Glass
3: Daylight cut

More filters on request

(4): Housing
1: Color black (standard)

(5): I/O
0: None (standard)
2: With I/O #08727

(6): Connector
0: None (standard)

(1)(2)(3)(4)

(1): Lensholder
1: No holder
2: C-mount with adjustable backfocus
3: CS-mount with adjustable backfocus
4: C-mount without adjustable backfocus
(CS-mount with add. 5 mm extension ring)
5: CS-mount without adjustable backfocus
(standard)
6: LENSHOLDER SH04F85 #16323
7: LENSHOLDER SH02M13V3 #10590
8: LENSHOLDER M12X0,5 22_16,2 #13759

(2): Filter
1: IR-CUT
2: Glass
3: Daylight cut
9: None (standard)

More filters on request

(3): Case
1: Color black (standard)

(4): I/O
1: None (standard)
2: With I/O #08727

CUP/STD 001

7.1.4 BVS CA-MLC

The BVS CA-MLC nomenclature scheme is as follows:

Sensor Model name MATRIX VISION model name
0.4 Mpix, 752 x 480, 1/3'', CMOS BVS CA-MLC-0004ZG/C mvBlueFOX-MLC200wG/C

1.2 Mpix, 1280 x 960, 1/3'', CMOS mvBlueFOX-MLC202bG/C

1.2 Mpix, 1280 x 960, 1/3'', CMOS mvBlueFOX-MLC202dG/C

1.2 Mpix, 1280 x 960, 1/3'', CMOS BVS CA-MLC-0012VG/C mvBlueFOX-MLC202vG/C

1.3 Mpix, 1280 x 1024, 1/2'', CMOS mvBlueFOX-MLC202aG/C

5.0 Mpix, 2592 x 1944, 1/2.5'', CMOS BVS CA-MLC-0050ZG/C mvBlueFOX-MLC205G/C

Series Sensor Color Options HW Variant CUP/STD

Model name BVS CA-←↩

MLC-
xxxxx G/C - see legend

below
- see legend

below
MATRIX VI-
SION model
name

mvBlueFOX-
MLC

xxx G/C/GE - see legend
below

- see legend
below

- see legend
below

Generated by Doxygen

16

Legend Model name MATRIX VISION model name

Options (C)(D)(E)

(C): Mini USB
U: with Mini USB (standard)
X: without Mini USB

(D): Digital I/Os
O: 1x IN + 1x OUT opto-isolated (standard)
T: 2x TTL IN + 2x TTL OUT

(E): Connector
W: board-to-wire (standard)
B: board-to-board
A: board-to-wire (angled connector)

HW Variant (1)(2)(3)(4)(5)(6)

(1): Handling
1: Standard handling

(2): Lensholder
0: None (standard)
2: C-mount with adjustable backfocus
4: CS-mount with adjustable backfocus
6: CS-mount without adjustable backfocus
9: C-mount without adjustable backfocus
(CS-mount with add. 5 mm extension ring)
Z: LENSHOLDER SH04F85 #16323
U: LENSHOLDER SH02M13V3 #10590
V: LENSHOLDER M12X0,5 22_16,2 #13759

(3): Filter
0: None (standard)
1: IR-CUT
2: Glass
3: Daylight cut

More filters on request

(4): Housing
0: None

(5): I/O
O: 1x IN + 1x OUT opto-isolated (standard)
T: 2x TTL IN + 2x TTL OUT

(6): Connector
U: Mini USB & board-to-wire (standard)
V: Mini USB & board-to-board
X: without Mini USB & board-to-wire
Y: without Mini USB & board-to-board

(1)(2)(3)(4)

(1): Lensholder
1: No holder (standard)
2: C-mount with adjustable backfocus
3: CS-mount with adjustable backfocus
4: C-mount without adjustable backfocus
(CS-mount with add. 5 mm extension ring)
5: CS-mount without adjustable backfocus
6: LENSHOLDER SH04F85 #16323
7: LENSHOLDER SH02M13V3 #10590
8: LENSHOLDER M12X0,5 22_16,2 #13759

(2): Filter
1: None (standard)
2: IR-CUT
3: Glass
4: Daylight cut

More filters on request

(3): Misc
1: None (standard)

(4): Misc
1: None (standard)

CUP/STD 001

7.1.5 Ordering code samples

Generated by Doxygen

7.2 What's inside and accessories 17

Model name MATRIX VISION model name Description

BVS CA-MLC-0004ZC-1600OX-
001

mvBlueFOX-MLC200wC-XOW-
5111

52 x 480, CMOS 1/3", color, single-
board, without Mini-USB, 1x IN + 1x
OUT opto-isolated, board-to-wire,
CS-mount (w/o backfocus adjust-
ment)

7.2 What's inside and accessories

Due to the varying fields of application the mvBlueFOX is shipped without accessories. The package contents:

• mvBlueFOX or BVS CA-MLC / BVS CA-IGC

• instruction leaflet

For the first use of the camera we recommend the following accessories to get the camera up and running:

• A USB 2.0 cable

Attention

"Reduced image quality"

According to the customer and if the BVS CA-MLC is shipped without lensholder, the BVS CA-←↩

MLC will be shipped with a protective foil on the sensor which will affect the image quality.

→ Before usage, please remove this foil!

Accessories for the mvBlueFOX:

Part code Description

ADAPTER CS-MOUNT Lens fixing for mvBlueFOX to match with CS-mount lenses

KS-USB2-AA-EXT 05.0 USB 2.0 extension, activeUSB2 A plug to USB2 A jack, length 5m

KS-USB2-AB 03.0 TR USB 2.0 cable A-B, transparent, Profi Line. Length 3m

KS-USB2-B4ST 02.0 USB 2.0 cable for mvBlueFOX, Binder 4pol to USB2-A. Length: 2m

KS-USB2-B4ST 03.0 USB 2.0 cable for mvBlueFOX, Binder 4pol to USB2-A. Length: 3m

KS-USB2-B4ST 05.0 USB 2.0 cable for mvBlueFOX, Binder 4pol to USB2-A. Length: 5m

KS-USB2-PHR4 01.5 USB connector cable for mvBlueFOX-M1xx. Length: 1.5m

KS-PHR12 500 Cable for mvBlueFOX-M1xx dig. I/O, 12-pin. Length: 500mm
1..4 brown
5..8 gray
9 red
10 black
11 yellow
12 black

KS-MLC-IO-TTL 00.5 BVS CA-MLC board-to-board TTL IO cable for master-slave synchronization
(Molex plug to Molex plug), Length: 0.5m

KS-MLC-IO-W BVS CA-MLC board-to-wire I/O data cable, Molex 0510211200 with crimp ter-
minal 50058. Length: up to 1m

Generated by Doxygen

18

KS-MLC-USB2-IO-W BVS CA-MLC board-to-wire I/O data and USB 2.0 cable, Molex 0510211200
with crimp terminal 50058 to USB2-A. Length: up to 1m

MV-Lensholder BFM-C C-mount lensholder for mvBlueFOX-M,incl. IR-Cut filter
MV-Lensholder BFM-S 9031 S-mount lensholder M12 x 0,5 type MS-9031 for mvBlueFOX-M102

MV-Lensholder BFM-S 9033 S-mount lensholder M12 x 0,5 type: MS-9033 for mvBlueFOX-M102

MV-LENSHOLDER SH02M13 S-mount lensholder M12 x 0.5, height 13mm for BVS CA-MLC

MV-LENSHOLDER SH01F08 S-mount lensholder M12 x 0.5, height 8mm for BVS CA-MLC

ADAPTER S-C AD01S Adapter for S-mount lens (M12x0,5) to C-mount, high penetration depth for
BVS CA-IGC

ADAPTER S-C AD02F Adapter for S-mount lens (M12x0,5) to CS-mount, penetration depth: 5.5mm,
outside diameters: 31mm for BVS CA-IGC

MV-Tripod Adapter BF Tripod adapter for mvBlueFOX

8 Quickstart

• System Requirements

• Installing the Impact Acquire driver

• Connecting The Camera

• Driver concept

• Relationship between driver, firmware and FPGA file

• About Settings

• Optimizing USB Performance

• Using USB2 Cameras In A Docker Container

8.1 System Requirements

The device is an industrial camera which requires a reliable USB connection to the host system.

For this reason the following components are recommended:

Component Recommendation

Processor Preferably multi core Intel or ARM CPUs

RAM 4 GB in 32-bit OS; 8 GB in 64-bit OS
Mainboard USB connectors

There is a huge variety of ARM based devices available on the market. Some suitable platforms have been tested
by Balluff and a summary of the results of this test can be found here: Appendix C. Tested ARM platforms

Please ask your system vendor for further advice and consult our technical documentation.

8.1.1 Supported Operating Systems

8.1.1.1 Windows The following versions of Windows are supported officially:

Generated by Doxygen

8.2 Installing the Impact Acquire driver 19

• Microsoft Windows 7 (32-bit, 64-bit)

• Microsoft Windows 8.1 (32-bit, 64-bit)

• Microsoft Windows 10 (32-bit, 64-bit)

• Microsoft Windows 11

Other Windows versions might work as well but will not be tested on a regular basis.

8.1.1.2 Linux Please check the 'Support' section of the Balluff website for the availability of the latest Linux driver
package.

See also

https://www.balluff.com/en-de/downloads/software

Currently supported Kernel versions are:

• Kernel 3.5.x or greater

8.2 Installing the Impact Acquire driver

8.2.1 Windows

Note

Before connecting the mvBlueFOX, please install the software and driver first!

All necessary drivers are available from the Balluff website: https://www.balluff.com/en-de/downloads/software/mvbluefox-usb-2-0.

Starting the installer application

• mvBlueFOX-x86-3.0.1.exe (for 32-bit systems) or

• mvBlueFOX-x86_64-3.0.1.exe (for 64-bit systems): will display the following dialog:

mvBlueFOX installer - Start window

Generated by Doxygen

https://www.balluff.com/en-de/downloads/software
https://www.balluff.com/en-de/downloads/software/mvbluefox-usb-2-0

20

• Now, follow the instructions of the installation program and adjust the settings to your needs:

mvBlueFOX installer - Select folder

Since

Version 2.25.0 of this driver package

ImpactControlCenter is able to check the availability of new driver versions weekly. Deactivate the check box if
ImpactControlCenter should not check for updates. You can activate this again in ImpactControlCenter via the help
menu.

mvBlueFOX installer - Select features

Generated by Doxygen

8.2 Installing the Impact Acquire driver 21

• After confirmation, the installation will start and copy files and install device drivers.

mvBlueFOX installer - Confirm installation

• The installation is finished now you can close the window.

mvBlueFOX installer - Finished installation

You will find all tools like

• ImpactControlCenter and

• DeviceConfigure

either as shortcuts on the desktop or in the Windows start menu under Balluff -> Impact Acquire.

Afterwards, you can use DeviceConfigure to update the firmware if needed. The latest firmware image is available
on the web - please check for updates. The current firmware version can be read out using ImpactControlCenter.

Generated by Doxygen

22

8.2.2 Linux

Additional packages will be needed to use all features of Impact Acquire.

Compiler etc. for building applications:

• build-essential (meta package)

• gcc 5.5.0 environment or newer

wxWidget release 3.0 or 3.2 packages, e.g.

• libwxbase3.0-0v5

• libwxbase3.0-dev

• libwxgtk3.0-gtk3-0v5

• libwxgtk3.0-gtk3-dev

• libwxgtk-webview3.0-gtk3-0v5

• libwxgtk-webview3.0-gtk3-dev

• wx3.0-headers

• libgtk2.0-dev

Note

The names of the packages mentioned above are Debian / Ubuntu specific. Other distributions (e.g.
SuSE, Arch, Redhat, ...) will use different names.

The installation script will ask if the packages should be downloaded during the installation process. If some of
the packages are not installed some features might not be available. If the e.g. wxWidgets related packages are
missing on the target system then all GUI application coming as part of the Impact Acquire installation won't be
available.

Note

If you are going to install the Impact Acquire package on an ARM device, please read this section first.

To use a (camera) device in Linux (capture images from it and change its settings), a driver is needed, consisting of
several libraries and several configuration files. These files are required during runtime.

To develop applications that can use the device an API is needed, containing header files, makefiles, samples, and
a few libraries.

Both file collections are distributed in a single package which is available in the Support section of the Balluff
website. In addition to that an installation script is provided which can be downloaded from the same location. Using
this script makes installing the driver package a lot easier.

Note

The following table shows the supported platforms and the corresponding package and installation script
name:

Architecture Package Installation Script

ARM64 mvBlueFOX ARM64_gnu 3.0.1.tgz install_mvBlueFOX_ARM

ARMhf mvBlueFOX ARMhf_gnueabi 3.0.1.tgz install_mvBlueFOX_ARM

x86_64 mvBlueFOX x86_64_ABI2 3.0.1.tgz install_mvBlueFOX

Generated by Doxygen

https://www.balluff.com/en-de/downloads/software

8.2 Installing the Impact Acquire driver 23

The following example explains the installation process for the x86_64 package. The installation process for
other packages will work almost identical except different names as mentioned in the previous table.

• Please start a console and change into the directory where the installation script and the installation package
are located e.g. /home/username/Downloads :

cd /home/username/Downloads

Note

If root permissions are needed, the script will ask for the permissions. There is no need to call it
with root permissions.

• You might need to enable the execute flag with:

chmod a+x install_mvGenTL_Acquire.sh

• Run the install script:

./install_mvGenTL_Acquire.sh

During installation the script will ask, if it should build all tools and samples.

Note

The installation scripts is developed for Ubuntu/Debian, SUSE Linux and Red Hat Linux based distribu-
tions. On other distributions some features of the installation script may or may not work. Get in touch
with us if you encounter any problems!

The installation script checks for package dependencies described above and installs them with the respective
standard package manager (e.g. apt-get) if necessary. So an Internet connection is recommended.

Note

The installation script (install_mvBlueFOX.sh) and the archive (mvBlueFOX x86_64_ABI2 3.←↩

0.1.tgz) must reside in the same directory. Nothing is written to this directory during script execution, so
no write access to the directory is needed in order to execute the script.

The script supports various arguments, which allow to customize the installation, the desired functionalities and the
installation process itself. All arguments are optional:

Argument Function

-h or --help Display the help.

-p or --path Define a custom installation directory.

-u or --unattended Unattended installation with default settings. By using this parameter you explicitly
accept the EULA.

-m or --minimal Minimal installation. No tools or samples will be built, and no automatic configuration
and/or optimizations will be done. By using this parameter you explicitly accept the
EULA.

The target directory name specifies where to place the driver. If the directory does not yet exist, it will be created.

Generated by Doxygen

24

The path can be either absolute or relative; i.e. the name may but need not start with / .

If no path is specified, the package will be installed to /opt/Impact Acquire.

Generated by Doxygen

8.3 Connecting The Camera 25

8.3 Connecting The Camera

Note

Before connecting the camera, please install the software and driver first!

After the driver installation you have to connect the camera using a USB 2.0 cable.

You can check if the driver installation was successful by using DeviceConfigure. Supported device with an installed
and running driver should be listed:

Connected camera

Afterwards, you can start ImpactControlCenter to configure the mvBlueFOX.

Since driver version 2.11.3, starting ImpactControlCenter the first time, the so called Quick Setup Wizard will
be started. Read more about how to make optimal use of it in the Impact Acquire GUI manual: https←↩

://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_GUI_←↩

Tools/index.html

8.4 Driver concept

The driver supplied with the Balluff/MATRIX VISION product represents the port between the programmer and the
hardware. The driver concept of Balluff provides a standardized programming interface to all image processing
products made by Balluff GmbH.
The advantage of this concept for the programmer is that a developed application runs without the need for any
major modifications to the various image processing products made by Balluff GmbH. You can also incorporate new
driver versions, which are available for download free of charge on our website:

https://www.balluff.com.
The following diagram shows a schematic structure of the driver concept:

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_GUI_Tools/index.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_GUI_Tools/index.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_GUI_Tools/index.html
https://www.balluff.com

26

Driver concept

• 1 Part of any Impact Acquire driver installation package (Windows).

• 2 Separately available for 32 bit and 64 bit. Requires at least one installed driver package.

• 3 See 2, but requires an installed version of the mvBlueFOX driver.

• 4 Part of the NeuroCheck installer but requires at least one installed frame grabber driver.

• 5 Part of the mvIMPACT SDK installation. However, new designs should use the .NET libs that are now part
of Impact Acquire (mv.impact.acquire.dll). The namespace mv.impact.acquire of mv.←↩

impact.acquire.dll provides a more natural and more efficient access to the same features as con-
tained in the deprecated namespace mvIMPACT_NET.acquire of mvIMPACT_NET.dll, which is why
the latter one should only be used for backward compatibility but NOT when developing a new application.

• 6 Part of Micro-Manager.

Generated by Doxygen

8.4 Driver concept 27

8.4.1 NeuroCheck Support

A couple of devices are supported by NeuroCheck. However between NeuroCheck 5.x and NeuroCheck 6.x there
has been a breaking change in the internal interfaces. Therefore also the list of supported devices differs from one
version to another and some additional libraries might be required.

For NeuroCheck 5.x the following devices are supported:

Device Additional software needed
mvTITAN-G1 mvSDK driver for mvTITAN/mvGAMMA devices
mvTITAN-CL mvSDK driver for mvTITAN/mvGAMMA devices
mvGAMMA-CL mvSDK driver for mvTITAN/mvGAMMA devices
mvBlueFOX Impact Acquire driver for mvBlueFOX devices, NCUSBmvBF.dll

For NeuroCheck 6.0 the following devices are supported:

Device Additional software needed
mvTITAN-G1 Impact Acquire driver for mvTITAN/mvGAMMA devices

mvTITAN-CL Impact Acquire driver for mvTITAN/mvGAMMA devices

mvGAMMA-CL Impact Acquire driver for mvTITAN/mvGAMMA devices

mvHYPERION-CLb Impact Acquire driver for mvHYPERION devices

Every other Impact Acquire compliant device Impact Acquire driver for the corresponding device family,
mv.impact.acquire.NeuroCheck6.dll (comes with
the driver package, but the driver package must be installed AF-
TER installing NeuroCheck 6

For NeuroCheck 6.1 the following devices are supported:

Device Additional software needed
mvTITAN-G1 Impact Acquire driver for mvTITAN/mvGAMMA devices

mvTITAN-CL Impact Acquire driver for mvTITAN/mvGAMMA devices

mvGAMMA-CL Impact Acquire driver for mvTITAN/mvGAMMA devices

mvHYPERION-CLb Impact Acquire driver for mvHYPERION devices

Every other Impact Acquire compliant device Impact Acquire driver for the corresponding device family,
mv.impact.acquire.NeuroCheck6_1.dll (comes
with the driver package, but the driver package must be installed
AFTER installing NeuroCheck 6.1

8.4.2 VisionPro Support

Every Impact Acquire driver package on Windows comes with an adapter to VisionPro from Cognex. The installation
order does not matter. After the driver package and VisionPro has been installed, the next time VisionPro is started
it will allow selecting the Impact Acquire device. No additional steps are needed.

Balluff/MATRIX VISION devices that also comply with the GigE Vision or USB3 Vision standard don't need any
software at all, but can also use VisionPro's built-in GigE Vision or USB3 Vision support.

8.4.3 HALCON Support

HALCON comes with built-in support for Impact Acquire compliant devices, so once a device driver has been in-
stalled for the Impact Acquire device, it can also be operated from a HALCON environment using the corresponding
acquisition interface. No additional steps are needed.

Generated by Doxygen

28

Balluff/MATRIX VISION devices that also comply with the GigE Vision standard don't need any software at all, but
can also use HALCON's built-in GigE Vision support.

As some Impact Acquire device driver packages also come with a GenTL compliant interface, these can also be
operated through HALCON's built-in GenTL acquisition interface.

8.4.4 LabVIEW Support

Every Impact Acquire compliant device can be operated under LabVIEW through an additional set of VIs which is
shipped by Balluff as a separate installation (mvLabVIEW Acquire).

Balluff/MATRIX VISION devices that also comply with the GigE Vision or USB3 Vision standard don't need any
additional software at all, but can also be operated through LabVIEW's GigE Vision or USB3 Vision driver packages.

8.4.5 DirectShow Support

Every Impact Acquire compliant device driver package comes with an interface to DirectShow. In order to be usable
from a DirectShow compliant application, devices must first be registered for DirectShow support. How to this is
explained here.

8.4.6 Micro-Manager Support

Every Impact Acquire compliant device can be operated under https://micro-manager.org when us-
ing Impact Acquire and at least Micro-Manager 1.4.23 build AFTER 15.12.2016. The adapter needed is part
of the Micro-Manager release. Additional information can be found here: https://micro-manager.←↩

org/wiki/MatrixVision.

8.5 Relationship between driver, firmware and FPGA file

To operate the camera apart from the physical hardware itself 3 pieces of software are needed:

• a firmware running on the device (provides low-level functionality like allowing the device to act as a USB
device, support for multiple power states etc.)

• an FPGA file loaded into the FPGA inside the device (provides access features to control the behaviour of
the image sensor, the digital I/Os etc.)

• a device driver (this is the mvBlueFOX.dll on Windows® and the libmvBlueFOX.so on Linux) running on the
host system (provides control over the device from an application running on the host system)

The physical camera has a firmware programmed into the device's non-volatile memory, thus allowing the device
to act as a USB device by just connecting the device to a free USB port. So the firmware version that will be used
when operating the device does NOT depend on the driver version that is used to communicate with the device.

On the contrary the FPGA file version that will be used will be downloaded in volatile memory (RAM) when accessing
the device through the device driver thus the API. One or more FPGA files are a binary part of the device driver.
This shall be illustrated by the following figure:

Generated by Doxygen

https://micro-manager.org
https://micro-manager.org/wiki/MatrixVision
https://micro-manager.org/wiki/MatrixVision

8.5 Relationship between driver, firmware and FPGA file 29

The firmware file is a binary part of the device driver

Note

As it can be seen in the image one or multiple firmware files are also a binary part of the device driver.
However it is important to notice that this firmware file will NOT be used automatically but only when
the user or an application explicitly updates the firmware on the device and will only become active after
power-cycling the device. In Impact Acquire, every firmware starting from version 49 is available within a
single driver library and can be selected for updating! DeviceConfigure however will always update the
device firmware to the latest version. If you need to downgrade the firmware for any reason please get
into contact with the Balluff support to get detailed instructions on how to do that.

8.5.1 FPGA

Until the device gets initialized using the API no FPGA file is loaded in the FPGA on the device. Only by opening
the device through the API the FPGA file gets downloaded and only then the device will be fully operational:

The FPGA file gets downloaded when the device will be opened through the API

As the FPGA file will be stored in RAM, disconnecting or closing the device will cause the FPGA file to be lost. The
firmware however will remain:

The FPGA file will be lost if the device is disconnected or closed

In case multiple FPGA files are available for a certain device the FPGA file that shall be downloaded can be selected
by an application by changing the value of the property Device/CustomFPGAFileSelector. However the value of this
property is only evaluated when the device is either initialized using the corresponding API function OR if a device
has been unplugged or power-cycled while the driver connection remains open and the device is then plugged back
in.

Generated by Doxygen

30

Note

There is just a limited set of devices that offer more than one FPGA file and these additional FPGA files
serve very special purposes so in almost every situation the default FPGA file will be the one used by
an application. Before using custom FPGA files, please check with Balluff about why and if this makes
sense for your application.

So assuming the value of the property Device/CustomFPGAFileSelector has been modified while the device has
been unplugged, a different FPGA file will be downloaded once the device is plugged back into the host system:

A different FPGA file can be downloaded

8.5.2 Firmware

Only during a firmware update the firmware file that is a binary part of the device driver will be downloaded perma-
nently into the device's non-volatile memory.

Attention

"Wrong firmware"

Until version 2.27.0 of the driver package for this device family, each device driver just contained
one specific firmware version thus once a device's firmware has been updated using a specific device
driver the only way to change the firmware version will be using another device driver version for up-
grading/downgrading the firmware again. In Impact Acquire, every firmware starting from version 49 is
available within a single driver library and can be selected for updating! DeviceConfigure however will
always update the device firmware to the latest version. If you need to downgrade the firmware for any
reason please get into contact with the Balluff support to get detailed instructions on how to do that.

→ In order to select the appropriate firmware version for the device appropriate tools such as
DeviceConfigure should be used.

So assume a device with a certain firmware version is connected to a host system:

A certain firmware version is connected to a host system

Generated by Doxygen

8.5 Relationship between driver, firmware and FPGA file 31

During an explicit firmware update, the firmware file from inside the driver will be downloaded onto the device. In
order to become active the device must be power-cycled:

Firmware file will be downloaded during an firmware update...

When then re-attaching the device to the host system, the new firmware version will become active:

... after power-cycling the device it will be active

• The current firmware version of the device can be obtained either by using one of the applications which are
part of the SDK such as DeviceConfigure or by reading the value of the property Device/FirmwareVersion or
Info/FirmwareVersion using the API

• The current FPGA file version used by the device can be obtained by reading the value of the property
Info/Camera/SensorFPGAVersion

Using ImpactControlCenter the same information is available as indicated by the following figure:

Generated by Doxygen

32

ImpactControlCenter - FPGA and Firmware version numbers

8.6 About Settings

A setting contains all parameters that are needed to configure the device to a state it was in when the setting was
created. Every image can be captured with a completely different set of parameters. In almost every case, these
parameters are accessible via a property offered by the device driver. A setting e.g. might contain

• The gain to be applied to the analog to digital conversion process for analog video sources or

• The AOI to be captured from the incoming image data.

So for the user a setting is the one and only place where all the necessary modifications can be applied to achieve
the desired data acquisition mode. There is however an important difference in behaviour between different interface
layouts. See "Impact Acquire SDK GUI Applications" chapter "ImpactControlCenter -> Device Configuration
-> General Device Configuration -> Changing The Interface Layout To GenICam Or DeviceSpecific" to find
out how to modify the interface layout or check in the API documentation for the interfaceLayout property of the
class Device.

Generated by Doxygen

8.6 About Settings 33

• When working with the DeviceSpecific interface layout, each frame will be captured with the settings as
present when requesting the image. Every parameter can be modified at any time. When requesting another
image the settings valid at that moment will be used to fill this buffer with data

• For the GenICam interface layout all device properties modified during a continuous acquisition will be applied
at once so might affect this or the next image transmitted by the device. Depending on various parameters
(the number of buffer already captured but not collected by the application, the way the device internally
operates(e.g. has already captured a couple of images that await transmission), etc.) this will have impact
on that captured images somewhere in the near future thus when a precise moment to change settings is
needed, continuous acquisition must be stopped and then restarted after modifying the features. Certain
features (typically those affecting the buffer layout/size) cannot be changed while a continuous acquisition is
running in GenICam interface layout anyway.

Now, whenever a device is opened, the driver will execute following procedure:

ImpactControlCenter - Device setting start procedure

• Please note that each setting location step in the figure from above internally contains two search steps. First
the framework will try to locate a setting with user scope and if this can't be located, the same setting will be
searched with global (system-wide) scope. On Windows this e.g. will access either the HKEY_CURRENT←↩

_USER or (in the second step) the HKEY_LOCAL_MACHINE branch in the Registry.

• Whenever storing a product specific setting, the device specific setting of the device used for storing will be
deleted (if existing). E.g. you have a device "VD000001" which belongs to the product group "VirtualDevice"
with a setting exclusively for "VD000001". As soon as you store a product specific setting using THIS device,
the (device specific) setting for "VD000001" will be deleted. Otherwise a product specific setting would never
be loaded as a device specific setting will always be found first. Storing a product specific setting with
a different device belonging to the same family however will NOT delete device specific settings for other
devices.

• The very same thing will also happen when opening a device from any other application! ImpactControlCenter
does not behave in a special way but only acts as an arbitrary user application.

Generated by Doxygen

34

• Whenever storing a device family specific setting, the device specific or product specific setting of the device
used for storing will be deleted (if existing). See above to find out why.

• On Windows the driver will not look for a matching XML file during start-up automatically as the native
storage location for settings is the Windows Registry. This must be loaded explicitly by the user by using the
appropriate API function offered by the SDK. However, under Linux XML files are the only setting formats
understood by the driver framework thus here the driver will also look for them at start-up. The device specific
setting will be an XML file with the serial number of the device as the file name, the product specific setting
will be an XML file with the product string as the filename, the device family specific setting will be an XML
file with the device family name as the file name. All other XML files containing settings will be ignored!

• Restoring of settings previously stored works in a similar way. After a device has been opened the settings
will be loaded automatically as described above.

• A detailed description of the individual properties offered by a device will not be provided here but can be
found in the C++ API reference, where descriptions for all properties relevant for the user (grouped together in
classes sorted by topic) can be found. As ImpactControlCenter doesn't introduce new functionality but simply
evaluates the list of features offered by the device driver and lists them any modification made using the GUI
controls just calls the underlying function needed to write to the selected component. ImpactControlCenter
also doesn't know about the type of component or e.g. the list of allowed values for a property. This again is
information delivered by the driver and therefore can be queried by the user as well without the need to have
special inside information. One version of the tool will always be delivered in source so it can be used as a
reference to find out how to get the desired information from the device driver.

Generated by Doxygen

8.7 Optimizing USB Performance 35

8.7 Optimizing USB Performance

Note

This section is only relevant for applications working with USB3 Vision™ or Balluff USB 2.0 devices!

8.7.1 Checklist for Windows

8.7.1.1 Host Controller Driver Also the USB host controller manufacturers provide driver updates for their
cards/chips every now and then. Using the latest drivers is always recommended and might improve the overall
performance of the system dramatically!

8.7.2 Checklist for Linux

8.7.2.1 udev rules Most Linux system nowadays use the udev device manager, which is responsible for dynam-
ically managing the /dev tree. In order to be able to use the Balluff mvBlueFOX3 (BVS CA-SF) "USB3 Vision"
camera as non-root user, a special set of rules has to be handed to the udev device manager.

On older systems this could be done by directly editing the contents of a "/etc/udev/rules" file, however
nowadays a "/etc/udev/rules.d" directory exists, which may contain several different files, each defining
the behavior of a system device.

In the specific case of BVS CA-SF device or any "USB3 Vision" device actually, if the camera has been installed
through the respective installation script install_mvGenTL_Acquire.sh , a suitable set of rules has been
installed automatically. However if for some reason these rules have to be created manually or must be changed at
later time it should be done like this:

1. Create a file in the "/etc/udev/rules.d" directory with name 52-U3V.rules if this doesn't exist
already. The content of the file should be something like this:

SUBSYSTEM!="usb|usb_device|plugdev", GOTO="u3v_rules_end"
ACTION!="add", GOTO="u3v_rules_end"

ATTRS{bDeviceClass}=="ef", ATTRS{bDeviceSubClass}=="02", ATTRS{bDeviceProtocol}=="01",
ENV{ID_USB_INTERFACES}=="*:ef0500:*", MODE="0664", GROUP="plugdev"

LABEL="u3v_rules_end"

2. OPTIONAL: Create another file in the "/etc/udev/rules.d" directory with name 52-mvbf3.rules
. This step is only necessary if a BVS CA-SF in the "mvbootloader" state should be recognised by the system.
This might happen if for any reason a camera has no valid firmware running e.g. due to a power failure during
a firmware update. The content of the file should be something like this:

SUBSYSTEM!="usb|usb_device|plugdev", GOTO="mvbf_rules_end"
ACTION!="add", GOTO="mvbf_rules_end"

ATTRS{idVendor}=="164c", ATTRS{idProduct}=="5531", MODE="0664", GROUP="plugdev"

LABEL="mvbf_rules_end"

Note

The above 52-U3V.rules file provides the necessary access privileges not only for BVS CA-SF
cameras, but also for any "USB3 Vision"-compliant device of other vendors.

As soon as this file is into place, each time the camera is plugged to the system it acquires the set of rights that
allows the user to use it without having root privileges.

Generated by Doxygen

36

8.7.2.2 Disabling The Auto-Suspend Mode Usually the Linux kernel suspends USB devices when they are not
in use for a certain time. In some cases this might cause unsuspected behaviour of USB devices. To avoid this kind
of issues it is a good idea to disable the USB autosupend mode.

sudo sh -c ’echo -1 > /sys/module/usbcore/parameters/autosuspend’

8.8 Using USB2 Cameras In A Docker Container

When developing machine vision applications using Docker containers, it might be required to access the cameras
inside the container. With the Impact Acquire driver stack this can be achieved fairly easily and this chapter will
demonstrate how to build a basic Docker container where the cameras can be used.

8.8.1 Host Preparation

8.8.1.1 Linux

8.8.1.2 Windows

8.8.1.2.1 Host system requirements

• Windows 11 64-bit: Home or Pro version 21H2 or higher, or Enterprise or Education version 21H2 or higher
(Build 22000 or later)

• Windows 10 64-bit: Home or Pro 21H1 (build 19043) or higher, or Enterprise or Education 20H2 (build 19042)
or higher

• WSL2 backend (For installation please follow: Docker Window Install)

• Impact Acquire driver package >= 2.48.0 recommended

8.8.1.2.2 Attach the camera to the WSL2 Linux distro via USB/IP USB devices physically connected to the
host system are not automatically accessible in the WSL2 Linux distro. They need to be first attached from the
Windows host to the default Linux distro via USB/IP. Please follow Connect USB devices WSL2 for imple-
mentation guidance.

8.8.1.2.3 Start udev manually udev is needed to identify attached USB devices and to access USB3 Vision™
devices as non-root users with the help of the udev-rules shipped by the Impact Acquire driver package. However,
systemd, which starts udev automatically, is by default not supported in WSL2 distros. Besides, udev doesn't
support containers. Since WSL2 distros themselves are technically containers, they are not supported by udev. In
order for udev to work in WSL2 distros, the following lines need to be commented out in /etc/init.d/udev
before manually starting udev, as shown below:

#if [! -w /sys]; then
log_warning_msg "udev does not support containers, not started"
exit 0
#fi

Then start udev in the WSL2 default Linux distro:

$ sudo /etc/init.d/udev start

Generated by Doxygen

https://docs.docker.com/desktop/install/windows-install/
https://learn.microsoft.com/en-us/windows/wsl/connect-usb

8.8 Using USB2 Cameras In A Docker Container 37

8.8.2 Building A Docker Image

The following demo Dockerfile builds a basic Docker image based on a slim version of Debian, where the Impact
Acquire driver package for the cameras and its sample programs are installed. This Dockerfile can be used in many
ways:

• Use it directly to test your device in a Docker container.

• Use it as a base image for your device applications.

• Use it as an inspiration for building your own Dockerfile.

Before building the Dockerfile, please download the required Impact Acquire driver installation files from Balluff
website (https://www.balluff.com/en-de/downloads/software) (user login is required):

• The installation script: install_mvBlueFOX.sh

• The installation package: mvBlueFOX-x86_64_ABI2-∗.tgz (∗ should be replaced by the version number)

Create a directory called Impact Acquire (as used in this demo Dockerfile) and move both installation files into this
directory. In this example, both files are downloaded into the Downloads directory and the Impact Acquire directory
is created inside the Downloads:

• $ cd ∼/Downloads

• $ mkdir Impact_Acquire

• $ mv install_mvBlueFOX.sh mvBlueFOX-x86_64_ABI2-∗.tgz Impact_Acquire/

Make the installation script install_mvBlueFOX.sh executable:

• $ cd Impact_Acquire

• $ chmod a+x install_mvBlueFOX.sh

Navigate back into the directory where product_name resides (e.g. Downloads) and create your Dockerfile:

• $ cd ∼/Downloads

• $ touch Dockerfile

Create the content of your Dockerfile. Our demo Dockerfile looks as follows:

start with slim version of actual Debian
FROM debian:9-slim

ENV LC_ALL C
ENV DEBIAN_FRONTEND noninteractive

entrypoint of Docker
CMD ["/bin/bash"]

set environment variables
ENV TERM linux
ENV MVIMPACT_ACQUIRE_DIR /opt/Impact_Acquire
ENV MVIMPACT_ACQUIRE_DATA_DIR /opt/Impact_Acquire/data
ENV container docker

Generated by Doxygen

https://www.balluff.com/en-de/downloads/software

38

update packets and install minimal requirements
after installation it will clean apt packet cache
RUN apt-get update && apt-get -y install build-essential && \

apt-get clean && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

move the directory Impact_Acquire with *.tgz and *.sh files to the container
COPY Impact_Acquire /var/lib/Impact_Acquire

execute the setup script in an unattended mode
RUN cd /var/lib/Impact_Acquire && \

./install_mvBlueFOX.sh -u && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

At last, build a Docker image using this Dockerfile:

$ sudo docker build -t [image_name] .

Note

Please make sure to call docker build from within the directory where the Dockerfile resides. An Internet
access is required for the docker build.

If built successfully, the newly built [image_name] will be listed when calling:

$ sudo docker images

8.8.3 Starting The Docker Container

Since the Docker container is isolated from the host system, it needs to be started with volume mount of /dev and
certain cgroup permissions for it to access the cameras. In order to avoid running the container in privileged mode,
which is not secure, it can be started like this:

$ sudo docker run -ti -v /dev:/dev --device-cgroup-rule ’a 189:* rwm’ [image_name] /bin/bash

Where:

• -v /dev:/dev: use volume mount to map the host /dev directory to the container, so the container will be able
to always detect devices also when they get unplugged and re-plugged at any time.

• –device-cgroup-rule 'a 189:∗ rwm': with the --device-cgroup-rule flag, specific permission rules can be
added to a device list that is allowed by the container's cgroup. Here in this example, 189 is the major number
of the USB bus, ∗ means all minor numbers, and rwm are respectively read, write, mknod accesses. By doing
so, all USB devices will get read, write, mknod access. The camera can thus be enumerated successfully.

8.8.4 Validation

After starting the container, the correct operation of cameras can be validated by running one of the sample pro-
grams provided by the Impact Acquire (e.g. SingleCapture):

• $ cd /opt/Impact_Acquire/apps/SingleCapture/x86_64

• $./SingleCapture If the attached camera appears in the device list of the program's output, access to
it in the container by using the Impact Acquire has been established. Now the camera can be used inside the
Docker container for your machine vision applications.

9 Technical Data

9.1 Power supply

Generated by Doxygen

9.2 Standard version (mvBlueFOX-xxx) 39

Symbol Comment Min Typ Max Unit

UUSBPOWER_IN Power supply via USB 4.75 5 5.25 V

IUSBPOWER_IN (@ 5V / 40MHz) 280 500 mA

IUSBPOWER_IN (Power Off Mode - only with BVS CA-IGC /
BVS CA-MLC)

66 mA

9.2 Standard version (mvBlueFOX-xxx)

9.2.1 Dimensions and connectors

Figure 1: Connectors mvBlueFOX

mvBlueFOX
Size without lens (w x h x l) 38.8 x 38.8 x 58.5 mm (CCD version)

38.8 x 38.8 x 53.1 mm (CMOS version)

General tolerance DIN ISO 2768-1-m (middle)

Figure 2: Dimensional drawing of tripod adapter

9.2.1.1 D-Sub 9-pin (male)

Figure 3: D-Sub 9-pin (male), digital I/O

Generated by Doxygen

40

Pin Signal Description

1 IN0- Negative terminal of opto-isolated input 1

2 OUT0- Negative terminal of opto-isolated output (emitter of npn-phototransistor)

3 OUT1- Negative terminal of opto-isolated output (emitter of npn-phototransistor)

4 IN1- Negative terminal of opto-isolated input ∗

5 N/C
6 IN0+ Positive terminal of opto-isolated input ∗

7 OUT0+ Positive terminal of opto-isolated output (collector of npn-phototransistor)

8 OUT1+ Positive terminal of opto-isolated output (collector of npn-phototransistor)

9 IN1+ Positive terminal of opto-isolated input ∗

1 Voltage between + and - may be up to 26V, input current is 17mA.

9.2.1.1.1 Characteristics of the digital inputs Open inputs will be read as a logic zero.

When the input voltage rises above the trigger level, the input will deliver a logic one.

Symbol Comment Min. Std. Max. Unit

UIN_TTL
High level input voltage TTL logic 3 5 6.5 V

Low level input voltage TTL logic -
0.7

1 V

IIN_TTL Current TTL logic 8.←↩

5
12 mA

UIN_PLC
High level input voltage PLC logic 12 24 V

Low level input voltage PLC logic -
0.7

8 V

IIN_PLC
Current PLC logic 17 25 mA

Figure 4: DigIn mvBlueFOX-xxx

In ImpactControlCenter you can change between

• TTL ("DigitalInputThreshold = 2V") and

• PLC ("DigitalInputThreshold = 10V")

Generated by Doxygen

9.2 Standard version (mvBlueFOX-xxx) 41

input behavior of the digital inputs using the DigitalInputThreshold property in "Digital I/O -> DigitalInput←↩

Threshold":

Figure 5: ImpactControlCenter - DigitalInputThreshold

Umin [V] Umax [V] Imin [mA] Imax [mA]

Output 30 100 (on state current)

9.2.1.1.2 Characteristics of the digital outputs

Figure 6: DigOut mvBlueFOX-xxx

9.2.1.1.3 Connecting flash to digital output You can connect a flash in series to the digital outputs as shown
in the following figure, however, you should only use LEDs together with a current limiter:

Generated by Doxygen

42

Figure 7: Connecting flash (LEDs) to DIG OUT

9.2.1.2 USB connector, type B (USB 2.0)

Figure 8: USB B connector (female)

Pin Signal

1 USBPOWER_IN
2 D-
3 D+
4 GND
Shell shield

Note

The mvBlueFOX is an USB device!

Attention

"Surge"

Using both USB ports at the same time can damage the device.

→ Do not connect both USB ports at the same time.

9.2.1.3 4-pin circular plug-in connector with lock (USB 2.0)

Figure 9: 4-pin circular plug-in connector (female)

Pin Signal 'R' version Signal 'U' version

1 USBPOWER_IN Power out from USB
2 D+ not connected
3 GND GND
4 D- not connected

Generated by Doxygen

9.3 Board-level version (mvBlueFOX-Mxxx) 43

Manufacturer: Binder
Part number: 99-3390-282-04

Note

Differentiation between 'R' and 'U' version is obsolete. New mvBlueFOX versions have both connectors
(circular connector and standard USB). The pin assignment corresponds to the description of 'R' version.

While mvBlueFOX is connected and powered via standard USB, it is possible to connect additional power
via circular connector (only power; the data lines must be disconnected!). Only in this case, the power
switch will change the power supply, if the current entry via standard USB is equal to or under the power
supply of "circular connector".

Attention

"Surge"

Using both USB ports at the same time can damage the device.

→ Do not connect both USB ports at the same time.

9.2.2 LED states

State LED
Camera is not connected or defect LED off
Camera is connected and active Green light on

9.3 Board-level version (mvBlueFOX-Mxxx)

9.3.1 Dimensions and connectors

Figure 10: mvBlueFOX-M12x (CCD) with C-mount

Generated by Doxygen

44

Figure 11: mvBlueFOX-M10x (CMOS)

Lens mount
Type "FB"

C-Mount 17.526
CS-Mount 12.526

Figure 12: Backside view of the board

Note

The mvBlueFOX-M has a serial I²C bus EEPROM with 64 KBit of which 512 Bytes can be used to store
custom arbitrary data.

See also

UserDataEntry class description

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1UserDataEntry.html

9.3 Board-level version (mvBlueFOX-Mxxx) 45

Pin Signal Comment Cable

1 USBPOWER_IN Supply voltage red

2 USB_DATA- Data white
3 USB_DATA+ Data green

4 GND Ground black

9.3.1.1 4-pin Wire-to-Board header (USB 2.0) Manufacturer: JST
Part number: B4B-PH-K

Pin Signal Comment

1 FPGA_IO0 Digital In 0

2 FPGA_IO1 Digital In 1

3 FPGA_IO2 Digital In 2

4 FPGA_IO3 Digital In 3

5 FPGA_IO4 Digital Out 0

6 FPGA_IO5 Digital Out 1

7 FPGA_IO6 Digital Out 2

8 FPGA_IO7 Digital Out 3

9 MAINPOWER Current from the USB cable
10 GND Ground
11 VCC24V 24 V output (10mA)

12 GND Ground

9.3.1.2 12-pin Wire-to-Board header (Dig I/O) Manufacturer: JST
Part number: B12B-PH-K

Attention

"False tensions or short-circuits"

The digital I/O's are connected directly via a resistor to the FPGA pins and therefore they are not
protected. If you connect the digital I/Os without providing a protection you will risk damaging the device.

→ - Provide a protection circuit to the digital I/O's of mvBlueFOX-M. - Afterwards connect the digi-
tal I/Os to the FPGA pins.

See also

High-Speed USB design guidelines

9.3.1.3 Contact

Generated by Doxygen

46

Figure 13: Contact, dimensions in mm (in.)

Application wire Q'ty / reel

mm2 AWG # Insulation O.D. mm (in.)

0.05 to 0.22 30 to 24 0.9 to 1.5 (.035 to .059) 8.000

Material and finish: phosphor bronze, tin-plated
Manufacturer: JST
Part number: SPH-002T-P0.5S

9.3.1.4 Housing

Figure 14: Housing, dimensions in mm (in.)

Circuits Dimensions in mm (in.) Q'ty / box

A B
4 6.0 (.236) 9.8 (.386) 1.000

12 22.0 (.866) 25.8 (1.016) 1.000

Material and finish: nylon 66, UL94V-0, natural (white)
Manufacturer: JST
Part number: PHR-4 / PHR-12

See also

Suitable assembled cable accessories for mvBlueFOX-M: What's inside and accessories

9.3.1.5 Characteristics of the mvBlueFOX-Mxxx digital I/Os

Symbol Comment Min Max Unit

UDIG_IN Input voltage -
0.←↩

3

3.6 V

9.3.1.5.1 Dig I/O max. values

Generated by Doxygen

9.3 Board-level version (mvBlueFOX-Mxxx) 47

Symbol Comment Min Nom Max Unit

UDIG_IN_LOW low level input voltage (IIN = 1.67mA) -
0.←↩

3

0 0.9 V

UDIG_IN_HIGH high level input voltage (IIN = 1.67mA) 2.←↩

2
3.3 3.6 V

IIN input current (@ 3.3V) 0.←↩

4
1.7 mA

9.3.1.5.2 Characteristics of the digital inputs

Figure 15: Digital input mvBlueFOX-Mxxx

Symbol Comment Min Nom Max Unit

IDIG_OUT current at digital output +-12 +-24 mA

UDIG_OUT_HIGH
digital output (IOUT=12mA) 1.6 V

Digital output (IOUT<2mA) 2.6 3.4 V

UDIG_OUT_LOW digital output (IOUT=2mA) 0.2 V

9.3.1.5.3 Characteristics of the digital outputs UDIG_OUT_HIGH min = 2.8 - IOUT ∗ 100

Figure 16: Digital output mvBlueFOX-Mxxx

Generated by Doxygen

48

Attention

"False tensions or short-circuits"

The digital I/O's are connected directly via a resistor to the FPGA pins and therefore they are not
protected. If you connect the digital I/Os without providing a protection you will risk damaging the device.

→ - Provide a protection circuit to the digital I/O's of mvBlueFOX-M. - Afterwards connect the digi-
tal I/Os to the FPGA pins.

Note

The Dig I/O characteristics of the mvBlueFOX-M are not compatible to the Dig I/O of the mvBlueFOX
standard version.

9.3.2 LED states

State LED
Camera is not connected or defect LED off
Camera is connected and active Green light on

9.3.3 Accessories mvBlueFOX-Mxxx

9.3.3.1 mvBlueFOX-M-FC-S The mvBF-M-FC-S contains high capacity condensers with switching electron-
ics for transferring stored energy of the condensers to external flash LEDs. It is possible to connect 2 pushbut-
tons/switches to the 8-pin header (CON3 - Control connector). Additionally, 2 LED interfaces are available. There
are two version of mvBF-M-FC-S:

• Model 1 can be connected to mvBlueFOX-M with a cable via CON5.

• Model 2 can be mounted on the mvBlueFOX-M via CON1 directly.

Generated by Doxygen

9.3 Board-level version (mvBlueFOX-Mxxx) 49

Figure 17: Model 1 with CON5 connector

Figure 18: Model 2 with CON1 connector

Pin Signal Comment

1 Flash + Flash power

2 Flash - Switched to ground (low side switch)

9.3.3.1.1 CON2 - Flash connector Manufacturer: JST
Part number: B-2B-PH

Pin Signal Comment

1 GND LED2 cathode connector / board ground

2 LED2 output LED2 anode connector1

3 GND LED1 cathode connector / board ground

4 LED1 output LED1 anode connector

5 GND Board ground

6 Input2 Switch to ground for setting Input2

7 GND Board ground

8 Input1 Switch to ground for setting Input1

9.3.3.1.2 CON3 - Control connector Manufacturer: JST
Part number: B-8B-PH-SM4 TB

Generated by Doxygen

50

Signal Parameter Min Typ Max Unit

GND Board ground 0 V

LED 1/2 output (anode)

Output voltage 2 5 V

Internal series resistance 465.←↩

3
470 474.←↩

4
Ohm

Forward current IF at ULED = 2V 1 6 mA

Input 1/2 (internal 10k pull up to 3.3V)

Voltage (open contact) 3.3 V

VIL (low level input voltage) 0.9 V

VIH (high level input voltage) 2.5 5.5 V

Flash +

Voltage (open contact) 23 24 25 V

Flash output capacitance 528 660 792 uF

Internal capacitance storage energy 0.190 Ws

Flash capacitance charge current /
output DC current

20 mA

Flash 2

IOUT -2 A

On voltage at IOUTMAX 0.15 V

Off voltage 23 24 25 V

9.3.3.1.3 Electrical characteristic 1 Depends on mvBlueFOX-M power supply
2 Attention: No over-current protection!

Figure 19: CON3 schematic

9.4 Single-board version (BVS CA-MLC)

9.4.1 Typical Power consumption @ 5V

Model Power consumption (+/- 10%) Unit

-200w 1.09 W
-202a 1.39 W
-202b 1.58 W
-202d 1.28 W
-202v 1.35 W
-205 1.37 W

Generated by Doxygen

9.4 Single-board version (BVS CA-MLC) 51

9.4.2 Dimensions and connectors

Figure 20: BVS CA-MLC-xxxxxx-1600OX-001

Note

The BVS CA-MLC has a serial I²C bus EEPROM with 16 KByte of which 8 KByte are reserved for the
firmware and 8 KByte can be used to store custom arbitrary data.

See also

UserDataEntry class description

9.4.2.1 Sensor's optical midpoint and orientation The sensor's optical midpoint is in the center of the board
(Figure 21: intersection point of the holes diagonals). The (0,0) coordinate of the sensor is located at the one bottom
left corner of the sensor (please notice that Mini-B USB connector is located at the bottom at the back).

Note

Using a lens, the (0,0) coordinate will be mirrored and will be shown at the top left corner of the screen
as usual!

Figure 21: Sensor's optical midpoint and orientation

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1UserDataEntry.html

52

9.4.2.2 Mini-B USB (USB 2.0)

Figure 22: Mini-B USB

Pin Signal Comment

1 USBPOWER_IN Supply voltage

2 USB_DATA- Data
3 USB_DATA+ Data
4 ID Not connected
5 GND Ground

9.4.2.3 12-pin Wire-to-Board header (USB 2.0 / Dig I/O)

Note

If you have the BVS CA-MLC variant which uses the standard Mini-B USB connector, pin 2 and 3 (USB←↩

_DATA+ / USB_DATA-) of the header won't be connected!

pin Opto-isolated variant TTL compliant variant Cable KS-←↩

MLC-USB2-←↩

IO-W

Cable KS-←↩

MLC-IO-W

Signal Comment Signal Comment

1 GND Ground GND Ground GND
2 USB_DATA+ Data USB_DATA+ Data USB_DATA+
3 USB_DATA- Data USB_DATA- Data USB_DATA-
4 USBPOWER←↩

_IN
Supply voltage USBPOWER←↩

_IN
Supply voltage USBPOWER←↩

_IN
5 I2C SDA Serial data

line (the I2C
interface is
master-only,
which means
that I2C slaves
can only be
connected
externally)

I2C SDA Serial data line

6 I2C SCL Serial clock
line (the I2C
interface is
master-only,
which means
that I2C slaves
can only be
connected
externally)

I2C SCL Serial clock
line

7 USBPOWER←↩

_IN
Supply voltage USBPOWER←↩

_IN
Supply voltage red

8 GND Ground GND Ground black black

Generated by Doxygen

9.4 Single-board version (BVS CA-MLC) 53

9 OUT0- Opto-isolated
digital output
0 (Negative
voltage)

OUT1 TTL compliant
digital output 1

blue blue

10 OUT0+ Opto-isolated
digital output
0 (Positive
voltage)

OUT0 TTL compliant
digital output 0

violet violet

11 IN0- Opto-isolated
digital input
0 (Negative
voltage)

IN1 TTL compliant
digital input 1

gray gray

12 IN0+ Opto-isolated
digital input
0 (Positive
voltage)

IN0 TTL compliant
digital input 0

pink pink

Note

I2C bus uses 3.3 Volts. Signals have a 2kOhm pull-up resistor. Access to the I2C bus from an application
is possible for BVS CA-MLC devices using an mvBlueFOX driver with version 1.12.44 or newer.

Manufacturer (suitable board-to-wire connector): Molex
Part number: 0510211200 1.25mm Housing
Link: http://www.molex.com/molex/products/datasheet.jsp?part=active/0510211200←↩

_CRIMP_HOUSINGS.xml&channel=Products&Lang=en-US
Manufacturer (multi-pin connector for board-to-board connection): e.g. Garry
Link: http://www.mpe-connector.de/index.php?lang=de&menu=16&mating=1841&id←↩

_product=6591 (recommended variant: 659-1-012-O-F-RS0-xxxx; xxxx = length of the pins)

See also

Suitable assembled cable accessories for BVS CA-MLC: What's inside and accessories

High-Speed USB design guidelines

More information about the usage of retrofittable ferrite

9.4.2.3.1 Electrical characteristic Digital inputs TTL

Figure 23: TTL digital inputs block diagram

Generated by Doxygen

http://www.molex.com/molex/products/datasheet.jsp?part=active/0510211200_CRIMP_HOUSINGS.xml&channel=Products&Lang=en-US
http://www.molex.com/molex/products/datasheet.jsp?part=active/0510211200_CRIMP_HOUSINGS.xml&channel=Products&Lang=en-US
http://www.mpe-connector.de/index.php?lang=de&menu=16&mating=1841&id_product=6591
http://www.mpe-connector.de/index.php?lang=de&menu=16&mating=1841&id_product=6591

54

Note

If the digital input is not connected, the state of the input will be "1" (as you can see in
ImpactControlCenter).

TTL compliant variant

Comment Min Typ Max Unit

IIN ILOW (INx) -
0.5

mA

UIN

VIH 3.←↩

6
5.5 V

VIL -
0.←↩

3

1.3 V

LVTTL compliant variant

Comment Min Typ Max Unit

IIN ILOW (INx) -
0.5

mA

UIN
VIH 2 3.8 V
VIL -

0.←↩

3

0.8 V

TTL input low level / high level time: Typ. < 210ns

Digital outputs TTL

Figure 24: TTL digital outputs block diagram

Comment Min Typ Max Unit

IOUT Dig_out power +-32 mA

UOUT

VOH (IOUT=32mA) 3.←↩

8
V

VOH 5.25

VOL (IOUT=32mA) 0.55 V

VOL 0.←↩

1

TTL output low level / high level time: Typ. < 40ns

Opto-isolated digital inputs

Generated by Doxygen

9.4 Single-board version (BVS CA-MLC) 55

Figure 25: Opto-isolated digital inputs block diagram with example circuit

Delay

Characteristics Symbol Typ. Unit

Turn-On time tON 3 us

The inputs can be connected directly to +3.3 V and 5 V systems. If a higher voltage is used, an external resistor
must be placed in series (Figure 25).

Used input voltage External series resistor

3.3V .. 5V none
12V 680 Ohm
24V 2 KOhm

Comment Min Typ Max Unit

UIN
VIH 3 5.5 V
VIL -

5.←↩

5

0.8 V

Opto-isolated digital outputs

Figure 26: Opto-isolated digital outputs block diagram with example circuit

Delay

Generated by Doxygen

56

Figure 27: Output switching times

Characteristics Symbol Test conditions Typ. Unit

Turn-On time tON

RL = 1.9 kOhm, VCC 5V, IC = 16mA
2

usStorage time tS 25

Turn-Off time tOFF 40

Comment Min Typ Max Unit

Ion load current 15 mA
Ioff leakage current 10 uA

Von Sat. at 2.4 mA VIH 0 (0.←↩

2)
0.4 V

Voff 30 V

9.4.3 LED states

State LED
Camera is not connected or defect LED off
Camera is connected but not initialized or in "Power off" mode. Orange light on

Camera is connected and active Green light on

9.4.4 Assembly variants

The BVS CA-MLC is available with following differences:

• Mini-B USB connector and digital I/O pin header

– 1/1 opto-isolated or 2/2 TTL compliant digital I/O

• USB via header without Mini-B USB connector

• female board connector instead of pin header (board-to-board connection)

• 3 different S-mount depths

• C(S)-mount compatibility using mvBlueCOUGAR-X flange

• ambient temperature operation: 5..55 deg C / 30..80 RH

• ambient temperature storage: -25..60 deg C / 20..90 RH

Generated by Doxygen

9.5 Single-board version with housing (BVS CA-IGC) 57

9.5 Single-board version with housing (BVS CA-IGC)

9.5.1 Dimensions and connectors

Figure 28: BVS CA-IGC-xxxxxx-16xxxx-001 with CS-mount without adjustable backfocus (standard)

Lens protrusion C-Mount CS-Mount

X 10 mm 5 mm

Figure 29: BVS CA-IGC-xxxxxx-19xxxx-001 with C-mount and adjustable backfocus

Lens protrusion C-Mount

X 8 mm (9.5 mm with max. Ø 20 mm)

Note

The BVS CA-IGC has a serial I²C bus EEPROM with 16 KByte of which 8 KByte are reserved for the
firmware and 8 KByte can be used to store custom arbitrary data.

See also

UserDataEntry class description

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1UserDataEntry.html

58

9.5.1.1 Mini-B USB (USB 2.0)

Figure 30: Mini-B USB

Pin Signal Comment

1 USBPOWER_IN Supply voltage

2 USB_DATA- Data
3 USB_DATA+ Data
4 ID Not connected
5 GND Ground

9.5.1.2 4-pin circular plug-in connector with lock (I/O)

Figure 31: 4-pin circular plug-in connector (female)

Pin Signal Comment Color (of cable)

1 IN0 + Opto-isolated digital input 0 (Positive voltage) brown

2 IN0 - Opto-isolated digital input 0 (Negative voltage) white

3 OUT0 + Opto-isolated digital output 0 (Positive voltage) blue

4 OUT0 - Opto-isolated digital output 0 (Negative voltage) black

Manufacturer: Binder
Part number: 79-3107-52-04

9.5.1.2.1 Electrical characteristic Please have a look at the BVS CA-MLC digital I/O characteristics (opto-
isolated model) of the 12-pin Wire-to-Board Header (USB / Dig I/O).

9.5.2 LED states

State LED
Camera is not connected or defect LED off
Camera is connected but not initialized or in "Power off" mode. Orange light on

Camera is connected and active Green light on

Generated by Doxygen

9.6 Summary of components 59

9.5.3 Positioning tolerances of sensor chip

The sensor's optical midpoint is in the center of the housing. However, several positioning tolerances in relation to
the housing are possible because of:

• Tolerance of mounting holes of the printed circuit board in relation to the edge of the lens holder housing is
not specified but produced according to general tolerance DIN ISO 2768 T1 fine.

• Tolerance of mounting holes on the printed circuit board because of the excess of the holes± 0.1 mm (Figure
32; 2).

• Tolerance between conductive pattern and mounting holes on the printed circuit board.
Because there is no defined tolerance between conductive pattern and mounting holes, the general defined
tolerance of ± 0.1 mm is valid (Figure 32; 1 in the Y-direction ± 0.1 mm; 3 in the Z-direction ± 0.1 mm)

There are further sensor specific tolerances, e.g. for model BVS CA-MLC-0004ZG:

• Tolerance between sensor chip MT9V034 (die) and its package (connection pad)

– Chip position in relation to the mechanical center of the package: 0.2 mm (± 0.1mm) in the X- and
Y-direction (dimensions in the sensor data sheet according to ISO 1101)

• Tolerance between copper width of the sensor package and the pad width of the printed circuit board
During the soldering the sensor can swim to the edge of the pad: width of the pad 0.4 mm (possible tolerance
is not considered), width of pin at least 0.35 mm, max. offset: ± 0,025mm

Further specific tolerances of other models on request.

Figure 32: Positioning tolerances of sensor chip

Note

There are also tolerances in lens which could lead to optical offsets.

9.6 Summary of components

Generated by Doxygen

60

Features Standard -M -MLC -IGC
"-xOx-" "-xTx-" "-xLx-" -xxx2

IP40 IP40
Image Mem-
ory

8 Mpixels

ADC resolu-
tion

CMOS: 10 bits (10/8 bit transfer) / CCD: 12 bits (10 bit transfer)

Inputs 2 4 1 2 3 1

Type opto-
isolated
5 V (TTL) /
24 V (PLC)
switchable
via software

LVTTL opto-
isolated

TTL LVTTL opto-
isolated

Outputs 2 4 1 2 - 2

Type opto-
isolated

LVTTL opto-
isolated

TTL - opto-
isolated

USB 2.0 USB-B 4-pin Wire-
to-Board
header

Mini-B USB (-xxW-) / 12-pin Wire-to-Board header (-xxB-) / Mini-B USB (-xxA-) Mini-B USB

Optics

Lens Mount
(Focal Dis-
tance)

C-mount
(17.526
mm in air),
CS-mount
(12.5 mm in
air)

C-mount
(17.526
mm in air),
CS-mount
(12.5 mm in
air), optional
S-mount

C-mount (17.526 mm in air), CS-mount (12.5 mm in air), optional S-mount C-mount
(17.526
mm in air),
CS-mount
(12.5 mm in
air)

Environment
Ambient
Temperature

Operation 0..45 deg C / 30 to 80% RH

Storage -20..60 deg C / 20 to 90% RH

Protection
class 1

IP40 IP40

Weight with-
out lens

approx. 120
g

approx. 17 g approx. 10 g approx. 80 g

Power sup-
ply (PWR←↩

_IN)

DC 4.75 to 5.25 V via USB
Pmax 1.5 W
Peak current
draw

0.5 A

1 not evaluated by UL

Generated by Doxygen

10 Sensor Overview 61

9.6.1 Summary of available digital I/O's

10 Sensor Overview

By default, the steps exposure and readout out of an image sensor are done one after the other. By design, CCD
sensors support overlap capabilities also combined with trigger (see figure). In contrast, so-called pipelined CMOS
sensors only support the overlapped mode. Even less CMOS sensors support the overlapped mode combined with
trigger. Please check the sensor summary. In overlapping mode, the exposure starts the exposure time earlier
during readout.

Figure 1: Overlapping / pipelined exposure and readout

Generated by Doxygen

62

10.1 CCD sensors

The CCD sensors are highly programmable imager modules which incorporate the following features:

Generated by Doxygen

10.1 CCD sensors 63

Sensors 0.3 Mpixels
resolution CCD
sensor (-220)

0.3 Mpixels
resolution CCD
sensor (-220a)

0.8 Mpixels
resolution CCD
sensor (-221)

1.4 Mpixels
resolution CCD
sensor (-223)

1.9 Mpixels
resolution CCD
sensor (-224)

Sensor supplier Sony Sony Sony Sony Sony

Sensor name ICX098 AL/BL ICX424 AL/AQ ICX204 AL/AQ ICX267 AL/AQ ICX274 AL/AQ
Resolution 640 x 480

gray scale or
RGB Bayer mo-
saic

640 x 480
gray scale or
RGB Bayer mo-
saic

1024 x 768
gray scale or
RGB Bayer mo-
saic

1360 x 1024
gray scale or
RGB Bayer mo-
saic

1600 x 1200
gray scale or
RGB Bayer mo-
saic

Sensor format 1/4" 1/3" 1/3" 1/2" 1/1.8"
Pixel clock 12 MHz / 24

MHz
20 MHz / 40
MHz

20 MHz / 40
MHz

tbd / 40 MHz 20 MHz / 40
MHz

Max. frames
per second

60 100 391 20 16

Binning H+V H+V H+V H+V H+V

Exposure time 44 us - 10 s 26 us - 10 s 44 us - 10 s 33 us - 10 s 30 us - 10 s

ADC (on sen-
sor board) reso-
lution

12 bit (up to
10 bit transmis-
sion)

12 bit (up to
10 bit transmis-
sion)

12 bit (up to
10 bit transmis-
sion)

12 bit (up to
10 bit transmis-
sion)

12 bit (up to
10 bit transmis-
sion)

Programmable
analog gain and
offset

X

Frame integrat-
ing progressive
scan sensor (no
interlaced prob-
lems!)

X

High resolution X

High color re-
productivity (for
color version)

X

High sensitivity,
low dark current

X

Continuous
variable-speed
shutter

X

Pipelined in
continuous /
triggered mode

X / -

Low smear X
Excellent an-
tiblooming
characteristics

X

Programmable
exposure time
from usec to
sec.

X

Programmable
readout timing
with free cap-
ture windows
and partial scan

X

Trigger (Hard-
ware / Soft-
ware)

X / X

Generated by Doxygen

64

Pipelined in
continuous /
triggered mode

X / - X / - X / - X / - X / -

Flash con-
trol output,
synchronous
to exposure
period

X

More specific
data

mvBlueFOX-[Model]220 (0.3 Mpix [640 x 480])mvBlueFOX-[Model]220a (0.3 Mpix [640 x 480])mvBlueFOX-[Model]221 (0.8 Mpix [1024 x 768])mvBlueFOX-[Model]223 (1.4 Mpix [1360 x 1024])mvBlueFOX-[Model]224 (1.9 Mpix [1600 x 1200])

1 With max. frame rate, image quality losings might be occur.

10.2 CMOS sensors

The CMOS sensor modules incorporate the following features:

Sensors: 0.4 Mpixels
resolution
CMOS sen-
sor (-200w)

1.3 Mpixels
resolution
CMOS sen-
sor (-202a)

1.2 Mpixels
resolution
CMOS sen-
sor (-x02v)1

only -MLC/-
IGC

1.2 Mpixels
resolution
CMOS sen-
sor (-x02b)1

only -MLC/-
IGC

1.2 Mpixels
resolution
CMOS sen-
sor (-202d)1

only -MLC/-
IGC

5.0 Mpixels
resolution
CMOS sen-
sor (-205)

Sensor sup-
plier

Aptina Aptina Aptina Aptina Aptina Aptina

Sensor
name

MT9V034 MT9M001 AR0135 MT9M021 MT9M034 MT9P031

Resolution 752 x 480
gray scale or
RGB Bayer
mosaic

1280 x 1024
gray scale

1280 x 960
gray scale or
RGB Bayer
mosaic

1280 x 960
gray scale or
RGB Bayer
mosaic

1280 x 960
gray scale or
RGB Bayer
mosaic

2592 x 1944
gray scale or
RGB Bayer
mosaic

Indication of
sensor cate-
gory to be
used

1/3" 1/2" 1/3" 1/3" 1/3" 1/2.5"

Pixel clock 40 MHz 40 MHz 40 MHz 40 MHz 40 MHz 40 MHz

Max. frames
per second
(in free-
running full
frame mode)

88.62 24.6 24.6 24.6 24.4 5.8

Binning H+V (frame
rate 170 Hz)

H+V,
AverageH+V
(frame rate
unchanged)

H+V,
AverageH+V
(frame rate
unchanged)

H+V,
AverageH+V
(frame rate
unchanged)

H+V,
AverageH+V
(frame rate
unchanged)

H+V, 3H+3V,
AverageH+V,
Average3←↩

H+3V,
Dropping←↩

H+V,
Dropping3←↩

H+3V (frame
rate 22.7 Hz)

Exposure
time

10 us - 0.46 s 100 us - 10 s 10 us - 1 s 10 us - 1 s 10 us - 1 s 10 us - 10 s

ADC resolu-
tion

10 bit (10 / 8
bit transmis-
sion)

10 bit (10 / 8
bit transmis-
sion)

10 bit (10 / 8
bit transmis-
sion)

10 bit (10 / 8
bit transmis-
sion)

10 bit (10 / 8
bit transmis-
sion)

10 bit (10 / 8
bit transmis-
sion)

Generated by Doxygen

10.2 CMOS sensors 65

SNR 42 dB 40 dB 40 dB < 43 dB 37.4 dB
DR (normal /
HDR)

55 dB / >
110 dB

61 dB / - > 61 dB / > 61 dB / > 61 dB / >
110 dB (with
gray scale
version)

65 dB /

Progressive
scan sen-
sor (no
interlaced
problems!)

X X X X X X

Rolling shut-
ter

- X - - X X

Global shut-
ter

X - X X - X

Trigger
(Hardware /
Software)

X / X X / - X / - X / - X / - X / X

Pipelined in
continuous
/ triggered
mode

X / - X / - X / - X / - X / - X / - (reset
only)

High color
reproductiv-
ity (for color
version)

X no no no no no

Programmable
readout tim-
ing with free
capture win-
dows and
partial scan

X X X X X X

Flash control
output, syn-
chronous to
exposure pe-
riod

X no no no no no

More specific
data

mvBlueFOX-[Model]200w (0.4 Mpix [752 x 480])mvBlueFOX-[Model]202a (1.3 Mpix [1280 x 1024])BVS CA-[MLC|IGC]-0012V / mvBlueFOX-[MLC|IGC]202v (1.2 Mpix [1280 x 960])mvBlueFOX-[Model]202b (1.2 Mpix [1280 x 960])mvBlueFOX-[Model]202d (1.2 Mpix [1280 x 960])mvBlueFOX-[Model]205 (5.0 Mpix [2592 x 1944])

1 The operation in device specific AEC/AGC mode is limited in (non continuous) triggered modes. AEC/AGC only
works while trigger signal is active. When the trigger signal is removed AEC/AGC stops and gain and exposure will
be set to a static value. This is due to a limitation of the sensor chip.
2 Frame rate increase with reduced AOI width, but only when width >= 560 pixels, below frame rate remains
unchanged.

Note

For further information about rolling shutter, please have a look at the practical report about rolling shutter
on our website: https://www.balluff.com/de-en/whitepapers/cmos-sensors-with-rolling-shutter

For further information about image errors of image sensors, please have a look at

For further information about image errors of image sensors, please have a look at Correcting image errors of a sensor.

Generated by Doxygen

https://www.balluff.com/de-en/whitepapers/cmos-sensors-with-rolling-shutter

66

10.3 Output sequence of color sensors (RGB Bayer)

Figure 2: Output sequence of RAW data

10.4 Bilinear interpolation of color sensors (RGB Bayer)

For Bayer demosaicing in the camera, we use bilinear interpolation:

Figure 3: Bilinear interpolation

1. Interpolation of green pixels: the average of the upper, lower, left and right pixel values is assigned as the G
value of the interpolated pixel.
For example:

(G3+G7+G9+G13)
G8 = --------------

4

For G7:

(G1+G3+G11+G13)
G7_new = 0.5 * G7 + 0.5 * ---------------

4

2. Interpolation of red/blue pixels:
Interpolation of a red/blue pixel at a green position: the average of two adjacent pixel values in corresponding
color is assigned to the interpolated pixel.
For example:

(B6+B8) (R2+R12)
B7 = ------- ; R7 = --------

2 2

Generated by Doxygen

11.1 Hot mirror filter 67

Interpolation of a red/blue pixel at a blue/red position: the average of four adjacent diagonal pixel values is
assigned to the interpolated pixel.
For example:

(R2+R4+R12+R14) (B6+B8+B16+B18)
R8 = --------------- ; B12 = ---------------

4 4

Any colored edge which might appear is due to Bayer false color artifacts.

Note

There are more advanced and adaptive methods (like edge sensitive ones) available if the host is doing
this debayering.

11 Filters

Several filters are available. The IR filter is part of the standard delivery condition.

11.1 Hot mirror filter

The hot mirror filter FILTER IR-CUT 15,5X1,75 FE has great transmission in the visible spectrum and blocks out a
significant portion of the IR energy.

Technical data
Diameter 15.5 mm
Thickness 1.75 mm
Material Borofloat
Characteristics T = 50% @ 650 +/- 10 nm

T > 92% 390-620 nm
Ravg > 95% 700-1150 nm

AOI = 0 degrees

Surface quality Polished on both sides

Surface irregularity 5/3x0.06 scratch/digs on both sides

Edges cut without bezel

Figure 1: FILTER IR-CUT 15,5X1,75 FE wavelengths and transmission diagram

Generated by Doxygen

68

11.2 Cold mirror filter

The FILTER DL-CUT 15,5X1,5 is a high-quality day light cut filter and has optically polished surfaces. The polished
surface allows the use of the filter directly in the path of rays in image processing applications. The filter is protected
against scratches during the transport by a protection film that has to be removed before the installing the filter.

Technical data
Diameter 15.5 mm
Thickness 1.5 +/- 0.2 mm
Material Solaris S 306
Characteristics Tavg > 80% > 780 nm

AOI = 0 degrees

Protective foil on both sides
Without antireflexion
Without bezel

Figure 2: FILTER DL-CUT 15,5X1,5 wavelengths and transmission diagram

11.3 Glass filter

It is also possible to choose the glass filter "FILTER GLASS 15,5X1,75" with following characteristics:

Technical data
Glass thickness 1.75 mm
Material Borofloat without coating

ground with protection chamfer

Surface quality polished on both sides P4

Surface irregularity 5/3x0.06 on both sides

Generated by Doxygen

12 GUI tools 69

Figure 3: Glass filter wavelengths and relative quantum efficiency diagram

12 GUI tools

12.1 Introduction

Balluff provides several convenient tools with graphical user interface to set up and work with their devices. Please
find a short list and description below:

12.2 ImpactControlCenter

With ImpactControlCenter it is possible

• to acquire images

• to configure the device, and

• to display and modify the device properties.

12.3 DeviceConfigure

DeviceConfigure can be used

• to set the device ID

• to update firmware

• to disable CPU sleep states(some version of Windows only)

12.4 IPConfigure

With IPConfigure it is possible

• to configure the network behavior of GigE Vision™ devices

• to determine and solve network issues.

Generated by Doxygen

70

12.5 GigEConfigure

With GigEConfigure it is possible

• to install, remove or configure the Balluff GigE Vision™ capture filter driver.

See also

For further information about the tools, please follow the link to the separate manual describing the GUI tools in
great detail on our website: https://www.balluff.com/en-de/documentation-for-your-balluff-product

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

13.2 How to use the HRTC 71

13 HRTC - Hardware Real-Time Controller

13.1 Introduction

The Hardware Real-Time Controller (HRTC) is built into the FPGA. The user can define a sequence of operating
steps to control the way how and when images are exposed and transmitted. Instead using an external PLC, the
time critical acquisition control is directly build into the camera. This is a very unique and powerful feature.

13.1.1 Operating codes

The operating codes for each step can be one of the followings:

OpCode Parameter Description

Nop - No operation

SetDigout Operation array on dig out Set a digital output

WaitDigin State definition array on dig in Wait for a digital input

WaitClocks Time in us Wait a defined time
Jump HRTC program address Jump to any step of the program

TriggerSet Frame ID Set internal trigger signal to sensor controller

TriggerReset - Reset internal trigger signal to sensor controller

ExposeSet - Set internal expose signal to sensor controller

ExposeReset - Reset internal expose signal to sensor controller

FrameNrReset - Reset internal sensor frame counter

256 HRTC steps are possible.

The section How to use the HRTC should give the impression what everything can be done with the HRTC.

13.2 How to use the HRTC

To use the HRTC you have to set the trigger mode and the trigger source. With object orientated programming
languages the corresponding camera would look like this (C++ syntax):

CameraSettings->triggerMode = ctmOnRisingEdge
CameraSettings->triggerSource = ctsRTCtrl

When working with ImpactControlCenter this are the properties to modify in order to activate the evaluation of the
HRTC program:

Generated by Doxygen

72

Figure 1: ImpactControlCenter - Setting up the HRTC usage

Following trigger modes can be used with HRTC:

• OnLowLevel

• OnHighLevel

• OnFallingEdge

• OnRisingEdge

• OnHighExpose

Further details about the mode are described in the API documentation:

See also

TCameraTriggerMode and TCameraTriggerSource in

• "Enumerations (C developers)"

• "CameraSettingsBlueFOX (C++ developers)"

In the Use Cases chapter there are the following HRTC sample:

• "Using single camera" :

– Achieve a defined image frequency (HRTC)

– Delay the external trigger signal (HRTC)

– Creating double acquisitions (HRTC)

– Take two images after one external trigger (HRTC)

– Take two images with different expose times after an external trigger (HRTC)

• "Using multiple cameras" :

– Delay the expose start of the following camera (HRTC)

Generated by Doxygen

14 Developing applications using the Impact Acquire SDK 73

14 Developing applications using the Impact Acquire SDK

The Impact Acquire SDK is a comprehensive software library that can be used to develop applications using
the devices described in this manual. A wide variety of programming languages is supported.

For developers using C, C++, .NET, Python or Java, separate API descriptions can be found on the Balluff website:

• Impact Acquire C API

• Impact Acquire C++ API

• Impact Acquire Java API

• Impact Acquire .NET API

• Impact Acquire Python API

Compiled versions (CHM format) might already be installed on your system. These manuals contain chapters on

• how to link and build applications using Impact Acquire

• how the log output for devices is configured and how it works in general

• how to create your own installation packages for Windows and Linux

• a detailed API documentation

• etc.

Generated by Doxygen

https://www.balluff.com/programming-interface-mvimpact-acquire.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_C/index.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/index.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_JAVA/index.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_NET/index.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_PYTHON/index.html

74

15 DirectShow Interface

Note

DirectShow can only be used in combination with the Microsoft Windows operating system.

Since Windows Vista, Movie Maker does not support capturing from a device registered for DirectShow
anymore.

This is the documentation of the Balluff DirectShow_acquire interface. A Balluff specific property interface based on
the IKsPropertySet has been added. All other features are related to standard DirectShow programming.

• Supported Interfaces

• Logging

• Setting up Devices For DirectShow Usage

• DirectShow-based Applications

15.1 Supported Interfaces

• IAMCameraControl

• IAMDroppedFrames

• IAMStreamConfig

• IAMVideoProcAmp

• ISpecifyPropertyPages

• IKsPropertySet (for further information please refer to the Microsoft DirectX 9.0 Programmer's Reference).
Supported property set GUID's:

– AMPROPERTY_PIN_CATEGORY

– DIRECT_SHOW_ACQUIRE_PROPERTYSET

15.1.1 C++ Example Code Using the IKsPropertySet Interface

This section provides a small C++ code snippet showing how the DirectShow interface could be used e.g. to query
all properties from a device or how to set the value of a certain property
#include <DSImpactAcquire/Include/DirectShowAcquire.h>

//--
// macro for writing the properties, feel free to replace the macros in the code
//--
#define _WRITE_STRING_PROPERTY(iksprop,prop,str)\

if(prop != 0)\
{\

prop->value.s = str;\
hr = iksprop->Set(DIRECT_SHOW_ACQUIRE_PROPERTYSET, MVPropIDWrite, NULL, 0, prop,

sizeof(MVProperty));\
}

//--
#define _WRITE_FLOAT_PROPERTY(iksprop,prop,fval)\

if(prop != 0)\
{\

prop->value.f = fval;\
hr = iksprop->Set(DIRECT_SHOW_ACQUIRE_PROPERTYSET, MVPropIDWrite, NULL, 0, prop,

sizeof(MVProperty));\
}

//--
#define _DELETE_POINTER_ARRAY(prop_array,cnt)\

Generated by Doxygen

15.1 Supported Interfaces 75

for(unsigned long pr = 0; pr < cnt; pr++)\
{\

if(prop_array[pr].stringArraySize > 0)\
delete [] prop_array[pr].stringArray;\

}

//--
// scanning the property list props for a property with name property_name
MVProperty* GetProperty(MVProperty* props, unsigned int property_count, char* property_name)
//--
{

for(unsigned int pr = 0; pr < property_count && props != 0; pr++)
{

// please feel free to replace standard c string handling to Standard C++ Library strings
if(strcmp(props[pr].propertyName, property_name) == 0)
{

return &props[pr];
}

}

return 0;
}

//--
// asking the ds-interface for the property list
unsigned long ScanAllProperties(IAMStreamConfig* pvsc, MVProperty* props, unsigned int property_count)
//--
{

IKsPropertySet* ksProp;
unsigned long propCnt = 0;
// try to get the ikspropertyset pointer
HRESULT hr = pvsc->QueryInterface(IID_IKsPropertySet, (void**)&ksProp);

if(SUCCEEDED(hr))
{

DWORD cbReturned;
ZeroMemory(props, property_count * sizeof(MVProperty));
// asking for the property interface. If one could be found then fill the propertylist props
hr = ksProp->Get(DIRECT_SHOW_ACQUIRE_PROPERTYSET, MVPropIDReadProperties, NULL, 0,

props, property_count * sizeof(MVProperty), &cbReturned);

//if successful returned then our list shows something like this
//props[0x0] {propertyName="IOSubSystem/DigitalInputThreshold" value={s= "2V" }...
//props[0x1] {propertyName="IOSubSystem/DigitalInputs" value={s= "Off" }...
//props[0x2] {propertyName="IOSubSystem/DigitalOutputs" value={s= "Off" }...
//props[0x3] {propertyName="IOSubSystem/HardwareRealTimeController/HRTCtrl_0/Filename" value={s=

"default.rtp" }...
//props[0x4] {propertyName="IOSubSystem/HardwareRealTimeController/HRTCtrl_0/Mode" value={s=

"Stop" } ...
//props[0x5] {propertyName="IOSubSystem/HardwareRealTimeController/HRTCtrl_0/ProgramSize"

value={i=0x5 }...
//...
//props[0x40] {propertyName="ImagingSubsystem/Setting/Base/Camera/AutoExposeControl" value={s=

"Off" } ...
//props[0x41] {propertyName="ImagingSubsystem/Setting/Base/Camera/AutoGainControl" value={s= "Off"

} ...
//props[0x42] {propertyName="ImagingSubsystem/Setting/Base/Camera/BinningMode" value={s= "Off" }

...
//props[0x43] {propertyName="ImagingSubsystem/Setting/Base/Camera/ExposeMode" value={s= "Standard"

} ...
//props[0x44] {propertyName="ImagingSubsystem/Setting/Base/Camera/Expose_us" value={i=0xea60 } ...
//props[0x45] {propertyName="ImagingSubsystem/Setting/Base/Camera/FlashMode" value={s= "Off" } ...
//props[0x46] {propertyName="ImagingSubsystem/Setting/Base/Camera/FrameDelay_us" value={i=0x0 }

...
//props[0x47] {propertyName="ImagingSubsystem/Setting/Base/Camera/Gain_dB" value={ f=0.0 } ...

propCnt = cbReturned / sizeof(MVProperty);
for(DWORD pr = 0; pr < propCnt; pr++)
{

//asking for the actual values of all properties
hr = ksProp->Get(DIRECT_SHOW_ACQUIRE_PROPERTYSET, MVPropIDRead, NULL, 0, &props[pr], sizeof(

props[pr]), &cbReturned);

//if stringArraySize is greater than 0 this property is from type stringarray.
if(props[pr].stringArraySize > 0)
{

//allocate some buffer for the stringArray
props[pr].stringArray = new const char* [props[pr].stringArraySize];

//fill the allocate stringArray with references to the pointers from the internal
properties,

//do not change or free these pointers
hr = ksProp->Get(DIRECT_SHOW_ACQUIRE_PROPERTYSET, MVPropIDReadStringArray, NULL, 0,

&props[pr], sizeof(props[pr]), &cbReturned);
}

}
ksProp->Release();

Generated by Doxygen

76

}
return propCnt;

}

//--
unsigned long functionXY(..., bool bBayerOFF, double gain)
//--
{

// ...

IKsPropertySet* ks_prop;
hr = gcap.pVSC->QueryInterface(IID_IKsPropertySet, (void**)&ks_prop);

if(SUCCEEDED(hr))
{

const int max_prop = 500;
MVProperty props[max_prop];
unsigned int propCnt = ScanAllProperties(gcap.pVSC, props, max_prop);

// if successful we get a list something like this otherwise propCnt = 0
//...
//props[0x40] {propertyName="ImagingSubsystem/Setting/Base/Camera/AutoExposeControl" value={s=

"Off" } ...
//props[0x41] {propertyName="ImagingSubsystem/Setting/Base/Camera/AutoGainControl" value={s= "Off"

} ...
//props[0x42] {propertyName="ImagingSubsystem/Setting/Base/Camera/BinningMode" value={s= "Off" }

...
//props[0x43] {propertyName="ImagingSubsystem/Setting/Base/Camera/ExposeMode" value={s= "Standard"

} ...
//props[0x44] {propertyName="ImagingSubsystem/Setting/Base/Camera/Expose_us" value={i=0xea60 } ...
//props[0x45] {propertyName="ImagingSubsystem/Setting/Base/Camera/FlashMode" value={s= "Off" } ...
//props[0x46] {propertyName="ImagingSubsystem/Setting/Base/Camera/FrameDelay_us" value={i=0x0 }

...
//props[0x47] {propertyName="ImagingSubsystem/Setting/Base/Camera/Gain_dB" value={ f=0.0 } ...
//...
// it is strongly recommended to work only with the propertyNames and not with the index from the

list.
// The driver for our cameras and grabber will always return same propertyNames.
MVProperty* gain_prop = GetProperty(props, propCnt, "ImagingSubsystem/Setting/Base/Camera/Gain_dB"

);
_WRITE_FLOAT_PROPERTY(ks_prop, gain_prop, gain);

MVProperty* bayer_prop = GetProperty(props, propCnt,
"ImagingSubsystem/Setting/Base/ImageProcessing/ColorProcessing");

// The property ColorProcessing is from type stringArray. Please have a look to the stringArray for
the different strings.

_WRITE_STRING_PROPERTY(ks_prop, bayer_prop, bBayerOFF ? "Raw" : "Auto");

// delete the stringarray
_DELETE_POINTER_ARRAY(props, propCnt);
ks_prop->Release();

}

// ...

}

15.2 Logging

The DirectShow_acquire logging procedure is equal to the logging of the Balluff products which uses Impact Acquire.
The log output itself is based on XML.

If you want more information about the logging please have a look at the Logging chapter of the respective Impact
Acquire API manual or read on how to configure the log-output using DeviceConfigure in the "Impact Acquire GUI
Applications" manual.

15.3 Setting up Devices For DirectShow Usage

In order to be able to access a device through the Impact Acquire driver stack from an application through Direct←↩

Show a registration procedure is needed. This can either be done using DeviceConfigure or by a command line tool
that is part of the Windows operating system.

Generated by Doxygen

15.3 Setting up Devices For DirectShow Usage 77

Note

Please be sure to register the device for DirectShow with a matching version of DeviceConfigure. I.e.
if you have installed the 32-bit version of the VLC Media Player, Virtual Dub, etc., you have to register
devices with the 32-bit version of DeviceConfigure ("C:/Program Files/Balluff/Impact Acquire/bin", the
64-bit version resides in "C:/Program Files/Balluff/Impact Acquire/bin/x64")!

15.3.1 Registering Devices

15.3.1.1 Using DeviceConfigure To register all devices currently recognized by the Impact Acquire driver stack
for access with DirectShow the following registration procedure is needed:

1. DeviceConfigure needs to be started (with elevated rights).
If no device has been registered the application will more or less (depending on the installed devices) look
like this.

DeviceConfigure - After Start

2. To register every installed device for DirectShow access click on the menu item "DirectShow"→ "Register
All Devices".

Generated by Doxygen

78

DeviceConfigure - Register All Devices

3. After a successful registration the column "Registered For DirectShow" will display "yes" for every device and
the devices will be registered with a default DirectShow friendly name which is displayed in the "DirectShow
Friendly Name" column.

DeviceConfigure - All Devices Registered For DirectShow Access

Generated by Doxygen

15.3 Setting up Devices For DirectShow Usage 79

15.3.1.2 Using regsvr32 To register all devices currently recognized by the Impact Acquire driver stack with
auto-assigned names, the Windows tool "regsvr32" can be used from an elevated command shell.

The following command line options are available and can be passed during the silent registration:

EXAMPLES:

Register ALL devices that are recognized by Impact Acquire (this will only register devices which have drivers
installed) without any user interaction:

regsvr32 <path>\DirectShow_acquire.ax /s

Unregister ALL devices that have been registered before without any user interaction:

regsvr32 <path>\DirectShow_acquire.ax /u /s

15.3.2 Renaming Devices

To modify the DirectShow friendly name of a device:

1. DeviceConfigure needs to be started (with elevated rights).

2. right-click on the device to rename and select "Set DirectShow Friendly Name":

DeviceConfigure - Set DirectShow Friendly Name

3. Then, a dialog will appear. Please enter the new name and confirm it with "OK".

Generated by Doxygen

80

DeviceConfigure - Dialog For New Name

4. Afterwards the column "DirectShow friendly name" will display the newly assigned friendly name.

DeviceConfigure - Renamed Device

Note

Please do not select the same friendly name for two different devices. In theory this is possible, however
the DeviceConfigure GUI will not allow this to avoid confusion.

15.4 DirectShow-based Applications

Applications like the VLC Media Player or VirtualDub can be used to capture images via DirectShow. VirtualDub
is a good choice if you want full control over the camera, while VLC Media Player decides some of the DirectShow
configuration under the hood, which may lead to undesirable results. (See Wrong Colors in the VLC Media Player)

Generated by Doxygen

15.4 DirectShow-based Applications 81

Note

Some Windows tools like Teams and Outlook also try to get hold of available DirectShow video capture
devices. Keep this in mind if you experience strange behavior of any DirectShow device.

Generated by Doxygen

82

16 Troubleshooting

• Accessing log files

• VLC Media Player Issues

16.1 Accessing log files

If you need support using our products, you can shorten response times by sending us your log files. Accessing the
log files is different in Windows and Linux:

16.1.1 Windows

Since

Version 2.11.9 of the host driver stack

You can access the log files in Windows using ImpactControlCenter. The way to do this is described in "Accessing
Log Files" in the "Impact Acquire SDK GUI Applications" manual.

16.1.2 Linux

Since

Version 2.24.0 of the host driver stack

You can access the log files in Linux via /opt/mvIMPACT_Acquire/data/logs .

You can also extract the directory using the following command

env | grep MVIMPACT_ACQUIRE_DATA_DIR

or change the directory directly via

cd $MVIMPACT_ACQUIRE_DATA_DIR/logs

For older versions:

Like on Windows, log files will be generated, if the activation flag for logging called mvDebugFlags.mvd is avail-
able in the same folder as the application (however, using Windows log files will be generated automatically, be-
cause the applications are started from the same folder). By default, on Linux the mvDebugFlags.mvd will be
installed in the installation's destination folder in the sub-folder "apps". For example, if the destination folder was
"/home/workspace", you can locate the mvDebugFlags.mvd like the following way:

Generated by Doxygen

16.2 VLC Media Player Issues 83

user@linux-desktop:~$
// <- Starting the console window, you will be in the home directory: /home/
user@linux-desktop:~$ cd workspace/apps/
// <- Change the directory
user@linux-desktop:/home/workspace/apps$ ls -l
// <- List the directory
insgesamt 144
drwxr-xr-x 9 user user 4096 Mai 21 15:08 Callback
drwxr-xr-x 8 user user 4096 Mai 21 15:08 Callback_C
drwxr-xr-x 9 user user 4096 Mai 21 15:08 CaptureToUserMemory_C
drwxr-xr-x 3 user user 4096 Mai 21 15:03 Common
drwxr-xr-x 11 user user 4096 Mai 21 15:09 ContinuousCapture
drwxr-xr-x 9 user user 4096 Mai 21 15:09 ContinuousCaptureAllDevices
drwxr-xr-x 6 user user 4096 Mai 21 15:09 ContinuousCaptureFLTK
drwxr-xr-x 9 user user 4096 Mai 21 15:09 ContinuousCapture_C
drwxr-xr-x 11 user user 4096 Mai 21 15:09 DigitalIOs
drwxr-xr-x 11 user user 4096 Mai 21 15:09 GenericInterfaceLayout
drwxr-xr-x 11 user user 4096 Mai 21 15:09 GenICamInterfaceLayout
-rw-r--r-- 1 user user 854 Mai 21 15:03 Makefile
-rw-r--r-- 1 user user 7365 Mai 21 15:03 Makefile.samp.inc
-rw-r--r-- 1 user user 20713 Mai 21 15:03 mvDebugFlags.mvd
// <- Log activation flag
drwxr-xr-x 7 user user 4096 Mai 21 15:09 DeviceConfigure
drwxr-xr-x 6 user user 4096 Mai 21 15:10 IPConfigure
drwxr-xr-x 6 user user 4096 Mai 21 15:11 ImpactControlCenter
drwxr-xr-x 9 user user 4096 Mai 21 15:11 SingleCapture
drwxr-xr-x 9 user user 4096 Mai 21 15:11 SingleCaptureStorage

For log file generation you have to execute your app from the folder where mvDebugFlags.mvd is located. E.g. if
you want to start ImpactControlCenter:

user@linux-desktop:/home/workspace/apps$./ImpactControlCenter/x86_64/ImpactControlCenter
// <- Start the executable from the folder, where \b mvDebugFlags.mvd is located.

Another possibility would be, to copy the mvDebugFlags.mvd file to the folder of the executable:

user@linux-desktop:/home/workspace/apps$ cp mvDebugFlags.mvd ./ImpactControlCenter/x86_64/ImpactControlCenter
// <- Copy the log activation flag
user@linux-desktop:/home/workspace/apps$ cd ./ImpactControlCenter/x86_64/
// <- Change the directory
user@linux-desktop:/home/workspace/apps/ImpactControlCenter/x86_64/$./ImpactControlCenter
// <- Start the executable

Afterwards, several log files are generated which are listed in files.mvloglist. The log files have the file
extension .mvlog. Please send these files to our support team.

16.2 VLC Media Player Issues

16.2.1 Wrong Colors in the VLC Media Player

When using the DirectShow_Acquire capture source with VLC Media Player 3, wrong colors can be seen in the
camera images.

This is a known bug in VLC Media Player 3, which will apparently be fixed in version 4.x, but probably not in version
3.x. The effect results from VLC interpreting the normal 24-bit video format delivered by all DirectShow Video
Capture sources (=RV24, MEDIASUBTYPE_RGB24) as a different pixel layout and consequently swapping the red
and the blue channels.

As a workaround, the image format of the DirectShow_Acquire capture source can be changed before start-
ing streaming. To do this, follow the steps according to Changing Camera Properties and change the Image←↩

Destination/PixelFormat from "RGB888Packed" to "BGR888Packed".

After clicking "OK" in the property dialog, choose your desired activity, and the camera will show correct colors.

Generated by Doxygen

84

Note

The PixelFormat used for streaming can only be changed manually for a recording/playback session,
but not permanently.

16.2.1.1 Background Changing the device's property ImageDestination/PixelFormat from "RGB888Packed" to
"BGR888Packed" might seem odd if you are used to the PixelFormatNamingConvention or have already delved into
details about in-memory image format storage.

The 24-bit Windows RGB format defines pixels of blue, green and red color in this order, so logically, this is a "BGR"
format. Due to historical reasons, the Impact Acquire image format "RGB888Packed" corresponds to this standard
Windows bitmap format.

The PixelFormat property of the camera, on the other hand, conforms to the GenICam Pixel Format Naming Con-
vention, and would be described there as "BGR8".

17 Error code list

Numerical Value String Representation Brief Description Detailed Description

-2000 PROPHANDLING_NOT_←↩

A_LIST
This component is not a list. This component is not a list.

A list operation for this com-
ponent has been called but
this component does not ref-
erence a list.

-2001 PROPHANDLING_NOT_←↩

A_PROPERTY
This component is not a
property.

This component is not a
property. A property opera-
tion for this component has
been called but this compo-
nent does not reference a
property.

-2002 PROPHANDLING_NOT_←↩

A_METHOD
This component is not a
method.

This component is not a
method. A method opera-
tion for this component has
been called but this compo-
nent does not reference a
method.

-2003 PROPHANDLING_NO_←↩

READ_RIGHTS
The caller has no read rights
for this component.

The caller has no read rights
for this component. It has
been tried to read data
from this component, but the
caller has no read rights for
this component.

-2004 PROPHANDLING_NO_←↩

WRITE_RIGHTS
The caller has no write rights
for this component.

The caller has no write rights
for this component. It has
been tried to modify data
of this component, but the
caller has no write rights for
this component.

Generated by Doxygen

17 Error code list 85

-2005 PROPHANDLING_NO_←↩

MODIFY_SIZE_RIGHTS
The caller can't modify the
size of this component.

The caller can't modify the
size of this component. It
has been tried to modify the
size of this list or the number
of values stored by a prop-
erty, but the caller doesn't
have the required right to do
this.
This error will also be re-
ported if the user tried to in-
crease the number of val-
ues handled by a property
above the maximum num-
ber of values it can handle.
Therefore before resizing a
property check if the new
size might exceeds this max-
imum value by calling the ap-
propriate function.

-2006 PROPHANDLING←↩

INCOMPATIBLE←↩

COMPONENTS

The two involved compo-
nents are not compatible.

The two involved compo-
nents are not compatible.
An operation requiring two
compatible components has
been called with two compo-
nents, which are not compat-
ible.

-2008 PROPHANDLING←↩

UNSUPPORTED←↩

PARAMETER

One or more of the speci-
fied parameters are not sup-
ported by the function.

One or more of the speci-
fied parameters are not sup-
ported by the function. This
error might also be gener-
ated if a certain feature is not
available on the current plat-
form.

-2009 PROPHANDLING_SIZE_←↩

MISMATCH
Different sized value buffers
have been passed.

Different sized value buffers
have been passed. While
trying to read value pairs the
caller passed two different
sized value buffers to a func-
tion while one is too small to
hold all the information.

-2010 PROPHANDLING_←↩

IMPLEMENTATION_←↩

MISSING

A feature that is not imple-
mented so far has been re-
quested.

A feature that is not imple-
mented so far has been
requested. The caller re-
quested a feature, that
hasn't been implemented so
far. This error code is only
provided for compatibility
and will be set in very rare
cases only.

Generated by Doxygen

86

-2011 PROPHANDLING←↩

ACCESSTOKEN←↩

CREATION_FAILED

An access token object
couldn't be created.

An access token object
couldn't be created. This
can either happen, because
the caller has not the rights
required to create an access
token or because the system
runs very low on memory.

Deprecated: This error
code currently is not used
anywhere within this frame-
work. It might be removed in
a future version.

-2012 PROPHANDLING_←↩

INVALID_PROP_VALUE
It has been tried to assign an
invalid value to a property.

It has been tried to assign an
invalid value to a property.
This can either happen if the
value lies above or below
the min. or max. value for
a property or when it has
been tried to write a value
to a property, which is not
in the properties translation
dictionary (if it defines one).

To find out, which val-
ues are allowed for the
property in question the user
should

• Check if the property
defines a translation dictio-
nary.
• Check the allowed values
within a translation dictio-
nary if one is defined.
• Check the min and max
value for properties, that
define limits.

-2013 PROPHANDLING_PROP←↩

_TRANSLATION_TABLE←↩

_CORRUPTED

The properties translation
table has been corrupted.

The properties translation
table has been corrupted.
The properties translation
table has been corrupted
for an unknown reason and
can't be used anymore.

Generated by Doxygen

17 Error code list 87

-2014 PROPHANDLING_PROP←↩

_VAL_ID_OUT_OF_←↩

BOUNDS

Invalid value index. Invalid value index. The
caller tried to read a value
from an invalid index from
a property. Most properties
store one value only, thus
the only valid positive value
index will be 0 (some neg-
ative index values are re-
served for special values like
e.g. the min/max value of
a property). However some
properties might store more
than one value, thus the
max. allowed index might
be higher. The highest in-
dex allowed will always be
the value count of a prop-
erty minus one for proper-
ties with the mvIMPACT←↩

::acquire::cfFixedSize flag
set. Other properties will
automatically adjust the size
once the user writes to an in-
dex out of bounds.

-2015 PROPHANDLING_PROP←↩

_TRANSLATION_TABLE←↩

_NOT_DEFINED

This property doesn't define
a translation table.

This property doesn't define
a translation table. The
caller tried to modify a trans-
lation table, that hasn't been
defined for this property.

-2016 PROPHANDLING_←↩

INVALID_PROP_VALUE_←↩

TYPE

An invalid value has been
passed to the property.

An invalid value has been
passed to the property.
Although properties are
quite tolerant regarding the
allowed assignment for them
some value types can't be
used to write all properties.
As an example assigning
a float value to an integer
property would result in this
error.

Another reason for this
error might be when a user
tried to access e.g. a float
property with functions
meant to be used for int
properties.

-2017 PROPHANDLING_PROP←↩

_VAL_TOO_LARGE
A too large value has been
passed.

A too large value has been
passed. One or more of
the values the caller tried
to write to the property are
larger than the max. allowed
value for this property.

Generated by Doxygen

88

-2018 PROPHANDLING_PROP←↩

_VAL_TOO_SMALL
A too small value has been
passed.

A too small value has been
passed. One or more of
the values the caller tried
to write to the property are
smaller than the min. al-
lowed value for this property.

-2019 PROPHANDLING_←↩

COMPONENT_NOT_←↩

FOUND

The specified component
could not be found.

The specified component
could not be found.

-2020 PROPHANDLING_LIST_←↩

ID_INVALID
An invalid list has been refer-
enced.

An invalid list has been refer-
enced.

-2021 PROPHANDLING_←↩

COMPONENT_ID_INVALID
An invalid component within
a list has been referenced.

An invalid component within
a list has been referenced.

-2022 PROPHANDLING_LIST_←↩

ENTRY_OCCUPIED
The specified list index is oc-
cupied.

The specified list index is
occupied. During the cre-
ation of a new component
the caller tried the insert
the newly created compo-
nent into a list at a posi-
tion already used to store
another component.

-2023 PROPHANDLING_←↩

COMPONENT_HAS_←↩

OWNER_ALREADY

The specified component al-
ready has an owner.

The specified component al-
ready has an owner. The
caller tried to assign an
owner to a component that
already has an owner. An
owner once defined can't be
modified anymore.

-2024 PROPHANDLING←↩

COMPONENT←↩

ALREADY_REGISTERED

It has been tried to regis-
ter the same component at
twice in the same list.

It has been tried to regis-
ter the same component at
twice in the same list.

-2025 PROPHANDLING_LIST_←↩

CANT_ACCESS_DATA
The desired data can't be
accessed or found.

The desired data can't be
accessed or found. During
loading or saving data this
error can occur e.g. if it has
been tried to import a set-
ting from a location where
the desired setting couldn't
be found. Another reason for
this error might be that the
current user is not allowed
to perform a certain opera-
tion on the desired data (e.g.
a user tries to delete a set-
ting that is stored with global
scope but does not have el-
evated access rights).

-2026 PROPHANDLING_←↩

METHOD_PTR_INVALID
The function pointer of the
referenced method object is
invalid.

The function pointer of the
referenced method object is
invalid.

-2027 PROPHANDLING_←↩

METHOD_INVALID_←↩

PARAM_LIST

A method object has an in-
valid parameter list.

A method object has an in-
valid parameter list.

Generated by Doxygen

17 Error code list 89

-2028 PROPHANDLING_SWIG←↩

_ERROR
This indicates an internal
error occurred within the
SWIG generated wrapper
code, when working under
Python.

This indicates an internal
error occurred within the
SWIG generated wrapper
code, when working under
Python.

-2029 PROPHANDLING←↩

_INVALID_INPUT_←↩

PARAMETER

A invalid input parameter
has been passed to a func-
tion of this module.

A invalid input parameter
has been passed to a func-
tion of this module. In
most cases this might be a
unassigned pointer, where a
valid pointer to a user de-
fined storage location was
expected.

-2030 PROPHANDLING_←↩

COMPONENT_NO_←↩

CALLBACK_REGISTERED

The user tried to modify a
registered callback, but no
callback has been registered
for this component.

The user tried to modify a
registered callback, but no
callback has been registered
for this component.

-2031 PROPHANDLING_INPUT←↩

_BUFFER_TOO_SMALL
The user tried to read data
into a user supplied storage
location, but the buffer was
too small to accommodate
the result.

The user tried to read data
into a user supplied storage
location, but the buffer was
too small to accommodate
the result.

-2032 PROPHANDLING_←↩

WRONG_PARAM_COUNT
The number of parameters is
incorrect.

The number of parameters is
incorrect. This error might
occur if the user called a
function with a variable num-
ber of input or output pa-
rameters and the number of
parameters passed to the
function does not match the
number of required parame-
ters.

-2033 PROPHANDLING←↩

UNSUPPORTED←↩

OPERATION

The user tried to execute an
operation, which is not sup-
ported by the component he
is referring to.

The user tried to execute an
operation, which is not sup-
ported by the component he
is referring to.

-2034 PROPHANDLING_CANT←↩

_SERIALIZE_DATA
The user tried to
save(serialize) a prop-
erty list without having the
right to do this.

The user tried to
save(serialize) a prop-
erty list without having the
right to do this.

-2035 PROPHANDLING_←↩

INVALID_FILE_CONTENT
The user tried to use a file
to update or create a compo-
nent list, that does not con-
tain valid data for this opera-
tion.

The user tried to use a file
to update or create a compo-
nent list, that does not con-
tain valid data for this oper-
ation. This e.g. might hap-
pen, if the file does not con-
tain valid XML data or XML
data that is not well formed.

-2036 PROPHANDLING_CANT←↩

_ALLOCATE_LIST
This error will occur when
the modules internal repre-
sentation of the tree struc-
ture does not allow the allo-
cation of a new list.

This error will occur when
the modules internal repre-
sentation of the tree struc-
ture does not allow the al-
location of a new list. In
this case either new list can't
be allocated. The only way
to solve this problem is to
delete another list.

Generated by Doxygen

90

-2037 PROPHANDLING_←↩

CANT_REGISTER_←↩

COMPONENT

The referenced list has no
space left to register this
component at the desired
position.

The referenced list has no
space left to register this
component at the desired
position. There might how-
ever be an empty space
within the list where this el-
ement could be registered,
but no more components
can be registered at the end
of this list.

-2038 PROPHANDLING_PROP←↩

_VALIDATION_FAILED
The user tried to assign a
value to a property, that is in-
valid.

The user tried to assign a
value to a property, that is
invalid. This will result in
a detailed error message
in the log-file. This error
might arise e.g. when a
string property doesn't allow
the string to contain num-
bers. In this case trying to
set the properties value to
'blabla7bla' would cause this
error.

-2099 PROPHANDLING_LAST←↩

_VALID_ERROR_CODE
Defines the last valid error
code value for the property
module.

Defines the last valid error
code value for the property
module.

-2100 DMR_DEV_NOT_FOUND The specified device can't be
found.

The specified device can't be
found. This error occurs ei-
ther if an invalid device ID
has been passed to the de-
vice manager or if the caller
tried to close a device which
currently isn't initialized.

-2101 DMR_INIT_FAILED The device manager couldn't
be initialized.

The device manager couldn't
be initialized. This is an in-
ternal error.

-2102 DMR_DRV_ALREADY_IN←↩

_USE
The device is already in use. The device is already in use.

This error e.g. will occur if
this or another process has
initialized this device already
and an application tries to
open the device once more
or if a certain resource is
available only once but shall
be used twice.

-2103 DMR_DEV_CANNOT_←↩

OPEN
The specified device couldn't
be initialized.

The specified device couldn't
be initialized.

-2104 DMR_NOT_INITIALIZED The device manager or an-
other module hasn't been
initialized properly.

The device manager or an-
other module hasn't been
initialized properly. This er-
ror occurs if the user tries
e.g. to close the device man-
ager without having initial-
ized it before or if a library
used internally or a mod-
ule or device associated with
that library has not been ini-
tialized properly or if

Generated by Doxygen

17 Error code list 91

-2105 DMR_DRV_CANNOT_←↩

OPEN
A device could not be initial-
ized.

A device could not be initial-
ized. In this case the log-file
will contain detailed informa-
tion about the source of the
problem.

-2106 DMR_DEV_REQUEST_←↩

QUEUE_EMPTY
The devices request queue
is empty.

The devices request queue
is empty. This error e.g.
occurs if the user waits for
an image request to become
available at a result queue
without having send an
image request to the device
before.

It might also arise when
trying to trigger an image
with a software trigger
mechanism before the ac-
quisition engine has been
completely started. In this
case a small delay and then
again calling the software
trigger function will succeed.

-2107 DMR_DEV_REQUEST_←↩

CREATION_FAILED
A request object couldn't be
created.

A request object couldn't be
created. The creation of a
request object failed. This
might e.g. happen, if the
system runs extremely low
on memory.

-2108 DMR_INVALID_←↩

PARAMETER
An invalid parameter has
been passed to a function.

An invalid parameter has
been passed to a func-
tion. This might e.g. hap-
pen if a function requiring
a pointer to a structure has
been passed an unassigned
pointer or if a value has been
passed, that is either too
large or too small in that con-
text.

-2109 DMR_EXPORTED_←↩

SYMBOL_NOT_FOUND
One or more symbols
needed in a detected driver
library couldn't be resolved.

One or more symbols
needed in a detected driver
library couldn't be resolved.
In most cases this is an
error handled internally. So
the user will not receive this
error code as a result of
a call to an API function.
However when the user tries
to get access to an IMPACT
buffer type while the needed
IMPACT Base libraries are
not installed on the target
system this error code also
might be returned to the
user.

-2110 DEV_UNKNOWN_ERROR An unknown error occurred
while processing a user
called driver function.

An unknown error occurred
while processing a user
called driver function.

Generated by Doxygen

92

-2111 DEV_HANDLE_INVALID A driver function has been
called with an invalid device
handle.

A driver function has been
called with an invalid device
handle.

-2112 DEV_INPUT_PARAM_←↩

INVALID
A driver function has been
called but one or more of the
input parameters are invalid.

A driver function has been
called but one or more of the
input parameters are invalid.
There are several possible
reasons for this error:
• an unassigned pointer has
been passed to a function,
that requires a valid pointer.
• one or more of the passed
parameters are of an incor-
rect type.
• one or more parameters
contain an invalid value (e.←↩

g. a filename that points
to a file that can't be found,
a value, that is larger or
smaller than the allowed val-
ues.
• within the current setup one
or more parameters impose
restrictions on the requested
operation that don't allow its
execution.

-2113 DEV_WRONG_INPUT_←↩

PARAM_COUNT
A function has been called
with an invalid number of in-
put parameters.

A function has been called
with an invalid number of in-
put parameters.

-2114 DEV_CREATE_SETTING←↩

_FAILED
The creation of a setting
failed.

The creation of a setting
failed. This can either hap-
pen, when a setting with the
same name as the one the
user tried to create already
exists or if the system can't
allocate memory for the new
setting.

-2115 DEV_REQUEST_CANT_←↩

BE_UNLOCKED
The unlock for a mv←↩

IMPACT::acquire::Request
object failed.

The unlock for a mv←↩

IMPACT::acquire::Request
object failed. This might
happen, if the mvIMPACT←↩

::acquire::Request is not
locked at the time of calling
the unlock function. It either
has been unlocked by the
user already or this request
has never been locked as
the request so far has not
been used to capture image
data into its buffer. Another
reason for this error might
be that the user tries to
unlock a request that is
currently processed by the
device driver.

Generated by Doxygen

17 Error code list 93

-2116 DEV_INVALID_←↩

REQUEST_NUMBER
The number for the mv←↩

IMPACT::acquire::Request
object is invalid.

The number for the mv←↩

IMPACT::acquire::Request
object is invalid. The max.
number for a mvIMPACT←↩

::acquire::Request object
is the value of the prop-
erty RequestCount in the
mvIMPACT::acquire←↩

::SystemSettings list -
1.

-2117 DEV_LOCKED_←↩

REQUEST_IN_QUEUE
A Request that hasn't been
unlocked has been passed
back to the driver.

A Request that hasn't been
unlocked has been passed
back to the driver. This er-
ror might occur if the user re-
quested an image from the
driver but hasn't unlocked
the mvIMPACT::acquire←↩

::Request that will be used
for this new image.

-2118 DEV_NO_FREE_←↩

REQUEST_AVAILABLE
The user requested a new
image, but no free mv←↩

IMPACT::acquire::Request
object is available to process
this request.

The user requested a new
image, but no free mv←↩

IMPACT::acquire::Request
object is available to process
this request.

-2119 DEV_WAIT_FOR_←↩

REQUEST_FAILED
The wait for a request failed. The wait for a request failed.

This might have several
reasons:

• The user waited for an
image, but no image has
been requested before.
• The user waited for a
requested image, but the
image is still not ready(e.g.
because of a short timeout
and a long exposure time).
• A triggered image has
been requested but no
trigger signal has been
detected within the wait
period.
• A plug and play device(e.g.
an USB device) has been
unplugged and therefore
can't deliver images any-
more. In this case the 'state'
property should be checked
to find out if the device is still
present or not.

-2120 DEV_UNSUPPORTED_←↩

PARAMETER
The user tried to get/set a
parameter, which is not sup-
ported by this device.

The user tried to get/set a
parameter, which is not sup-
ported by this device.

-2121 DEV_INVALID_RTC_←↩

NUMBER
The requested real time con-
troller is not available for this
device.

The requested real time con-
troller is not available for this
device.

Generated by Doxygen

94

-2122 DMR_INTERNAL_ERROR Some kind of internal error
occurred.

Some kind of internal error
occurred. More information
can be found in the ∗.log-file
or the debug output.

-2123 DMR_INPUT_BUFFER_←↩

TOO_SMALL
The user allocated input
buffer is too small to accom-
modate the result.

The user allocated input
buffer is too small to accom-
modate the result.

-2124 DEV_INTERNAL_ERROR Some kind of internal error
occurred in the device driver.

Some kind of internal er-
ror occurred in the device
driver. More information can
be found in the ∗.log-file or
the debug output.

-2125 DMR_LIBRARY_NOT_←↩

FOUND
One or more needed li-
braries are not installed on
the system.

One or more needed li-
braries are not installed on
the system.

-2126 DMR_FUNCTION_NOT_←↩

IMPLEMENTED
A called function or ac-
cessed feature is not avail-
able for this device.

A called function or ac-
cessed feature is not avail-
able for this device.

-2127 DMR_FEATURE_NOT_←↩

AVAILABLE
The feature in question is
(currently) not available for
this device or driver.

The feature in question is
(currently) not available for
this device or driver. This
might be because another
feature currently blocks the
one in question from being
accessible. More informa-
tion can be found in the
∗.log-file or the debug out-
put.

-2128 DMR_EXECUTION_←↩

PROHIBITED
The user is not permitted to
perform the requested oper-
ation.

The user is not permitted to
perform the requested oper-
ation. This e.g. might hap-
pen if the user tried to delete
user data without specifying
the required password.

-2129 DMR_FILE_NOT_FOUND The specified file can't be
found.

The specified file can't be
found. This might e.g. hap-
pen if the current working di-
rectory doesn't contain the
file specified.

-2130 DMR_INVALID_LICENCE The licence doesn't match
the device it has been as-
signed to.

The licence doesn't match
the device it has been as-
signed to. When e.g. up-
grading a device feature
each licence file is bound to
a certain device. If the de-
vice this file has been as-
signed to has a different se-
rial number then the one
used to create the licence
this error will occur.

-2131 DEV_SENSOR_TYPE_←↩

ERROR
There is no sensor found
or the found sensor type is
wrong or not supported.

There is no sensor found
or the found sensor type is
wrong or not supported.

Generated by Doxygen

17 Error code list 95

-2132 DMR_CAMERA_←↩

DESCRIPTION_INVALID
A function call was associ-
ated with a camera descrip-
tion, that is invalid.

A function call was as-
sociated with a camera
description, that is invalid.
One possible reason might
be, that the camera descrip-
tion has been deleted(driver
closed?).

Since

1.5.0

-2133 DMR_NEWER_LIBRARY←↩

_REQUIRED
A suitable driver library to
work with the device man-
ager has been detected, but
it is too old to work with this
version of the mvDevice←↩

Manager library.

A suitable driver library to
work with the device man-
ager has been detected,
but it is too old to work with
this version of the mv←↩

DeviceManager library. This
might happen if two different
drivers have been installed
on the target system and
one introduces a newer ver-
sion of the device manager
that is not compatible with
the older driver installed on
the system. In this case this
error message will be written
into the log-file together with
the name of the library that
is considered to be too old.

The latest drivers will al-
ways be available online
under https://www.←↩

balluff.com. There
will always be an updated
version of the library con-
sidered to be too old for
download from here.

Since

1.6.6

-2134 DMR_TIMEOUT A general timeout occurred. A general timeout occurred.
This is the typical result
of functions that wait for
some condition to be met
with a timeout among their
parameters.
More information can be
found in the ∗.log-file or the
debug output.

Since

1.7.2

Generated by Doxygen

https://www.balluff.com
https://www.balluff.com

96

-2135 DMR_WAIT_ABANDONED A wait operation has been
aborted.

A wait operation has been
aborted. This e.g. might
occur if the user waited
for some message to be
returned by the driver
and the device driver has
been closed within an-
other thread. In order to
inform the user that this
waiting operation termi-
nated in an unusual wait,
mvIMPACT::acquire::←↩

DMR_WAIT_ABANDONED
will be returned then.

Since

1.7.2

-2136 DMR_EXECUTION_←↩

FAILED
The execution of a method
object or reading/writing to a
feature failed.

The execution of a method
object or reading/writing
to a feature failed. More
information can be found in
the log-file.

Since

1.9.0

-2137 DEV_REQUEST_←↩

ALREADY_IN_USE
This request is currently
used by the driver

This request is currently
used by the driver This error
may occur if the user tries
to send a certain request
object to the driver by a call
to the corresponding image
request function.

Since

1.10.31

-2138 DEV_REQUEST_←↩

BUFFER_INVALID
A request has been config-
ured to use a user supplied
buffer, but the buffer pointer
associated with the request
is invalid.

A request has been config-
ured to use a user supplied
buffer, but the buffer pointer
associated with the request
is invalid.

Since

1.10.31

Generated by Doxygen

17 Error code list 97

-2139 DEV_REQUEST_←↩

BUFFER_MISALIGNED
A request has been config-
ured to use a user supplied
buffer, but the buffer pointer
associated with the request
has an incorrect alignment.

A request has been config-
ured to use a user supplied
buffer, but the buffer pointer
associated with the request
has an incorrect align-
ment. Certain devices need
aligned memory to perform
efficiently thus when a user
supplied buffer shall be
used to capture data into
this buffer must follow these
alignment constraints

Since

1.10.31

-2140 DEV_ACCESS_DENIED The requested access to a
device could not be granted.

The requested access
to a device could not be
granted.There are multiple
reasons for this error code.
Detailed information can be
found in the ∗.log-file.
POSSIBLE CAUSES:
• an application tries to
access a device exclusively
that is already open in an-
other process
• a network device has
already been opened with
control access from another
system and the current sys-
tem also tries to establish
control access to the device
• an application tried to
execute a function that is
currently not available
• an application tries to write
to a read-only location.

Since

1.10.39

Generated by Doxygen

98

-2141 DMR_PRELOAD_←↩

CHECK_FAILED
A pre-load condition for load-
ing a device driver failed.

A pre-load condition for load-
ing a device driver failed.
Certain device drivers may
depend on certain changes
applied to the system in
order to operate correctly.
E.g. a device driver might
need a certain environment
variable to exist. When the
device manager tries to load
a device driver it performs
some basic checks to detect
problems like this. When
one of these checks fails the
device manager will not try
to load the device driver and
an error message will be
written to the selected log
outputs.

Since

1.10.52

-2142 DMR_CAMERA_←↩

DESCRIPTION_INVALID←↩

_PARAMETER

One or more of the camera
descriptions parameters are
invalid for the grabber it is
used with.

One or more of the camera
descriptions parameters are
invalid for the grabber it is
used with. There are mul-
tiple reasons for this error
code. Detailed information
can be found in the ∗.log-file.

POSSIBLE CAUSES←↩

:

• The TapsXGeometry
or TapsYGeometry param-
eter of the selected camera
description cannot be used
with a user defined AOI.
• A scan standard has been
selected, that is not sup-
ported by this device.
• An invalid scan rate has
been selected.
• ...
This error code will be re-
turned by frame grabbers
only.

Since

1.10.57

Generated by Doxygen

17 Error code list 99

-2143 DMR_FILE_ACCESS_←↩

ERROR
A general error returned
whenever there has been
a problem with accessing a
file.

A general error returned
whenever there has been a
problem with accessing a
file. There can be multiple
reasons for this error and
a detailed error message
will be sent to the log-output
whenever this error code is
returned.

POSSIBLE CAUSES←↩

:

• The driver tried to modify a
file, for which it has no write
access.
• The driver tried to read
from a file, for which it has
no read access.
• ...

Since

1.10.87

-2144 DMR_INVALID_QUEUE_←↩

SELECTION
An error returned when the
user application attempts to
operate on an invalid queue.

An error returned when the
user application attempts to
operate on an invalid queue.

Since

1.11.0

-2145 DMR_ACQUISITION_←↩

ENGINE_BUSY
An error returned when the
user application attempts to
start the acquisition engine
at a

An error returned when the
user application attempts to
start the acquisition engine
at a

Since

2.5.3

-2146 DMR_BUSY An error returned when the
user application attempts to
perform any operation that
currently for any reason
cannot be started because
something else already run-
ning.

An error returned when the
user application attempts
to perform any operation
that currently for any reason
cannot be started because
something else already
running. The log-output will
provide additional informa-
tion.

Since

2.32.0

Generated by Doxygen

100

-2147 DMR_OUT_OF_MEMORY An error returned when
for any reason internal re-
sources (memory, handles,
...) cannot be allocated.

An error returned when
for any reason internal re-
sources (memory, handles,
...) cannot be allocated.
The log-output will provide
additional information.

Since

2.32.0

-2199 DMR_LAST_VALID_←↩

ERROR_CODE
Defines the last valid error
code value for device and
device manager related er-
rors.

Defines the last valid error
code value for device and
device manager related er-
rors.

18 Glossary

A/D reference Upper threshold of video signal to be digitized. All values above this limit
value are digitized to 255. Increasing the reference level results in contrast
deterioration and vice versa.

ADC
Analog-to-digital converter (A/D converter).

API
Application programming interface (API). The standard API for Balluff/←↩

MATRIX VISION products is called mvIMPACT_Acquire.

Base address Starting address from which the memory or register are inserted.

Bpp Bits per pixel

Bus A group line via which the various parts of the computer communicate with
one another.

BusyBox
Configurable monolithic application including shell and other useful
command line tools - often called the "swiss army knife" for embedded
systems. Even desktop distributions are sometimes relying on BusyBox
due to its robustness. Please see http://www.busybox.net for
details.

CCIR Comité Consulatif International of the Radio Communications European
video standard for 50 Hz gray scale.

CIFS
Common Internet file system (CIFS) replaced Samba in 2006.
It gets rid of NetBIOS packets an introduced Unix features like
soft/hard links and allows larger files.

Clamp signal Clamp signal means, that a AC coupled video signal is clamped on the
porch to get a signal transfer with less noise and independent from the d.c.
voltage portion.

CPU
Central processing unit aka processor.

DAC Digital to analog converter (D/A converter).

Defaults Standard system settings.

DHCP
Dynamic Host Configuration Protocol (DHCP). DHCP is a protocol
used by networked devices (clients) to obtain various parameters
necessary for the clients to operate in an Internet Protocol (IP) network.

Digital I/O Digital inputs and outputs.

External trigger External event used to initiate image capture.

False colors Colors are assigned to gray scale via a look-up table. This allows even
small gray scale differences can be displayed clearly.

GDB
GDB, the GNU Project debugger.

Generated by Doxygen

http://www.busybox.net

18 Glossary 101

GenICam
GenICam stands for GENeric programming Interface for CAMeras.
It's a generic way to access and modify device parameters with a
unified interface. A GenICam compliant device either directly provides
a GenICam compliant description file (in internal memory) or the
description file can be obtained from a local (hard disk etc.) or web
location. A GenICam description file is something like a machine
readable device manual. It provides a user readable name and value
range for parameters that are offered by the device for reading and/or
writing and instructions on what command must be sent to a device when
the user modifies or reads a certain parameter from the device. These
description files are written in XML. An excerpt from such a file can
be seen in the figure below:

Excerpt of a GenICam description file (in XML)
For further information on this topic please have a look at
https://en.wikipedia.org/wiki/GenICam.

GenTL
GenTL is the transport layer interface for
cameras, acquiring images from the camera, and moving them to the
user application.

Gigabit Ethernet (GigE)
The term Gigabit Ethernet (defined by the
IEEE 802.3-2008 standard) represents various technologies for
transmitting Ethernet frames at a rate of a gigabit per second
(1,000,000,000 bits per second).

Generated by Doxygen

https://en.wikipedia.org/wiki/GenICam

102

GigE Vision
GigE Vision is a network protocol designed for the
communication between an imaging device and an application. This proto-
col completely
describes:

• device discovery

• data transmission

– image data

– additional data

• read/write of parameters.
GigE Vision uses UDP for data transmission to reduce overhead in-
troduced by TCP.

Note

UDP does not guarantee the order in which packets
reach the client nor
does it guarantee that packets arrive at the client at all.
However,
GigE Vision defines mechanisms that can detect lost
packets.
This allows capture driver manufacturers to implement
algorithms
that can reconstruct images and other data by requesting
the device to
resend lost data packets until the complete buffer has
been assembled. For further information please have a
look at
https://en.wikipedia.org/wiki/GigE_←↩

Vision
The Balluff GigE Vision capture filter driver as well as the
socket based
acquisition driver and all Balluff GigE Vision compliant
devices support
resending thus lost data can be detected and in most
cases reconstructed. This
of course can not enhance the max. bandwidth of the
transmission line thus if
e.g. parts of the transmission line are overloaded for a
longer period of time
data will be lost anyway.

Both capture drivers will allow to fine tune the resend algorithm used
internally
and both drivers will also provide information about the amount of
data lost and
the amount of data that was re-requested. This informa-
tion/configuration will be
part of the drivers SDK. More information about it can be found in
the
corresponding interface description.

Note

On Windows 2000 the filter driver does not support the "←↩

Resend" mechanism.

Generated by Doxygen

https://en.wikipedia.org/wiki/GigE_Vision
https://en.wikipedia.org/wiki/GigE_Vision

18 Glossary 103

High Dynamic Range (HDR) The HDR (High Dynamic Range) mode increases
the usable contrast range. This is achieved by dividing the integration
time in two or three phases. The exposure time proportion of the three
phases can be set independently. Furthermore, it can be set, how many
signal of each phase is charged.

Horizontal sync The portion of the analog signal which specifies the line end of the video
signal.

Host Here: the PC

HRTC
With a Hardware Real-Time Controller (HRTC)
built inside the FPGA users can define a PLC like sequence of operating
steps to
control basic time critical functions like exposure time, image trigger and
I/O
ports. Timing is hard real-time with sub microsecond high resolution.

IDE
a software application that provides comprehensive facilities to
computer programmers for software development. An IDE normally
consists of a source code editor, a compiler and/or interpreter,
build automation tools, and (usually) a debugger.

Image refresh rate Number of transferred images per second. Normally specified in Hz (e.g.
70 Hz)

Interrupt Interrupt signal sent to the processor. The program currently running is
interrupted and a predefined function is executed.

IPKG
Itsy package management system originally designed for
embedded systems. Please have a look at https://en.←↩

wikipedia.org/wiki/Ipkg or a more sophisticated documen-
tation
at
http://buffalo.nas-central.org/index.php "←↩

Overview_of_the_ipkg_package_management_system"
Balluff distributes all non-firmware, i.e. optional software as ipk packages.

IRQ Interrupt request

ISR Interrupt service routine

JFFS2
JFFS2 is a file system which supports wear leveling.

See also

Sources about the JFFS file system:

• http://sources.redhat.com/jffs2/

• http://www.linux-mtd.infradead.←↩

org/faq/jffs2.html

Link Aggregation (LAG)
Dual-GigE cameras need a network interface card with
two network interfaces. However, both network interfaces have to work as
a unit.
Link aggregation (LAG) or bonding is the name of the game and has to be
supported
by the network interface card's driver. With it you can bond the two network
interfaces
so that the work as one interface.

Generated by Doxygen

https://en.wikipedia.org/wiki/Ipkg
https://en.wikipedia.org/wiki/Ipkg
http://buffalo.nas-central.org/index.php
http://sources.redhat.com/jffs2/
http://www.linux-mtd.infradead.org/faq/jffs2.html
http://www.linux-mtd.infradead.org/faq/jffs2.html

104

LLA
Logical link address (LLA) is a type of mechanism to
obtain a valid IP address without a DHCP server being present. Whether
an IP
address is available or not is resolved using address resolution protocol
(ARP)
packets. If no ARP response is received on a given address it is considered
unused
and will be assigned to the interface. LLA space is 169.254.x.y, i.e. 16bit
netmask
yielding 64K possible device addresses.
With Linux you have to add LLA as an additional interface.
By default, you can find one interface in Connections:
(This description uses "Gnome Network Manager", however using KDE
should be similar)

In Wired, you can add interfaces via Add:

Generated by Doxygen

18 Glossary 105

In the tab "IPv4 Setting" you have to set "Link-Local Only":

After saving, you will find both connections in the summary:

Now, you can select the wished connection using the left mouse button in
the "Network Manager" menu. In the LLA case it is just the new created
connection:

Look-up table Table of assignments. Here, new gray scale or colors are normally as-
signed to gray scale. Look-up tables can, however, also be used for any
other math functions.

LSB Least significant bit

Generated by Doxygen

106

LUT Look-up table

MAC address
Media Access Control address (MAC address) is
a quasi-unique identifier attached to most network adapters (NICs) in
computer networking.

MTU
Maximum transmission unit (MTU) refers to the size (in bytes) of
the largest packet that a given layer of a communications protocol can
pass onwards. The default MTU for Ethernet is 1500. The optimum for
Gigabit Ethernet is 8000 - 12000. Different MTU settings in the same
subnet can cause package losses, i.e. never ever
change the
MTU unless you know what you're doing. Changing the MTU to other val-
ues
than 1500 when using file or web services from other computers are
almost always a bug. It's save to increase MTU when working in
peer-to-peer mode with both devices sharing the same MTU. Please not
that few network cards support 16K, most Gigabit Ethernet cards are
limited to 9k, some don't support Jumbo Frames (MTU > 1500) at all.

Monochrome A single-color (black and white) image

MSB Most significant bit

Impact Acquire
This driver supplied with Balluff products represents
the port between the programmer and the hardware. The driver concept
of Balluff provides a standardized programming interface to all
image processing products made by
Balluff GmbH.
The advantage of this concept for the programmer
is that a developed application runs without the need for any major
modifications to the various image processing products made by
Balluff GmbH. You can also incorporate new driver versions,
which are available for download free of charge on our website:

https://www.balluff.com.
The SDK documentation of the Impact Acquire can be found at the
manuals section.

Netboot
With netboot you can boot a BVS CA-GX camera over network.
This is especially useful when several devices share the same pieces
of software, i.e. same root file system, which might be subject to change
frequently.

NFS
Network File System (NFS) is a network file system protocol,
allowing clients to access files over LAN. Given that you need a NFS
server are uncommon on Windows, this protocol best fits for Linux-Linux
connections.

NIC
Network interface card - synonym for network controller.

Generated by Doxygen

https://www.balluff.com
https://www.balluff.com/en-de/documentation-for-your-balluff-product
https://www.balluff.com/en-de/documentation-for-your-balluff-product

18 Glossary 107

Overlapped / pipelined transfer
By default, the steps exposure and readout out of an image sensor are
done one after the other.

• By design, CCD sensors support overlap capabilities also combined
with trigger (see figure).

• In contrast, so-called pipelined CMOS sensors only support the over-
lapped mode. Even less CMOS sensors support the overlapped
mode combined with trigger.

Please check the sensor summary.
In overlapping mode, the exposure starts the exposure time earlier during
readout.

Note

In overlapped trigger mode, you have to keep in mind the follow-
ing formula

interval between two trigger events >=
(readout time - exposure time)

Pixels Picture element

PSE
Power sourcing equipment. The network PoE element that inserts
power onto an Ethernet cable.

Pseudo colors Display of gray scale images in false colors. A corresponding color is as-
signed to a specific gray scale value.

Resolution Number of pixels (horizontal x vertical)

ROI/AOI
Region/Area of interest.

Generated by Doxygen

108

SFNC
Standard Feature Naming Convention
of GenICam.

See also

The latest GenICam properties list can be
found here: http://www.emva.←↩

org/standards-technology/genicam/genicam-downloads/

The file is called "GenICam Standard Features Naming Convention
(PDF)"

Shell
In computing, a shell is a piece of software that provides an
interface for users. Command-line shells provide a command-line
interface (CLI) to the operating system. The primary purpose of
the shell is to invoke or "launch" another program; however, shells
frequently have additional capabilities such as viewing the
contents of directories.

Square pixels Square-shaped pixels (height-width ratio 1:1)

True color 24-bit true color; 16.7 million colors

USB3 Vision
A closed source framework, defined and administered by the Automated
Imaging Association (AIA), for transmitting video and related control data
over USB 3. Sometimes U3V is used as an acronym.

UDP
The User Datagram Protocol (UDP) is an Internet protocol. It is used by
applications to send messages to other hosts on an Internet Protocol (IP)
network.

Vertical sync Synchronization pulse in video signal for field end recognition.

Virtual Network Computing (VNC)
Virtual Network Computing (VNC) is a
graphical desktop sharing system that uses the RFB protocol
to remotely control another computer. Over a network, it
transmits the mouse and keyboard events from one computer
to another, relaying the graphical screen updates back in
the other direction.
To access the camera's desktop from a PC via VNC,

• you have to know the IP address of the remote system.

• Start a VNC viewer and

• point it to the remote system.

You won't need a password. Of course, you won't get a very
fast live image display via the network with VNC but you
should be able to start ImpactControlCenter and capture images.

wxWidgets
wxWidgets is a cross-platform GUI library. It can be used from
languages such as C++, Python, Perl, and C#/.NET.

See also

http://www.wxwidgets.org

Zero signal The zero signal was needed with the old frame grabbers, to calibrate the
analog/digital converter (ADC) (signal and parameter aren't important any-
more).

Generated by Doxygen

http://www.emva.org/standards-technology/genicam/genicam-downloads/
http://www.emva.org/standards-technology/genicam/genicam-downloads/
http://www.wxwidgets.org

19 Use Cases 109

19 Use Cases

• Introducing acquisition / recording possibilities

• Improving the acquisition / image quality

• Saving data on the device

• Working with several cameras simultaneously

• Working with HDR (High Dynamic Range Control)

• Working with I2C devices

• Working with LUTs

• Working with triggers

• Working with 3rd party tools

• Working with the Hardware Real-Time Controller (HRTC)

Generated by Doxygen

110

19.1 Introducing acquisition / recording possibilities

There are several use cases concerning the acquisition / recording possibilities of the camera:

• Generating very long exposure times

• Using Video Stream Recording

19.1.1 Generating very long exposure times

Since

Version 1.10.65 of the mvBlueFOX driver package

Very long exposure times are possible with mvBlueFOX. For this purpose a special trigger/IO mode is used.

You can do this as follows (pseudo code):

TriggerMode = OnHighExpose
TriggerSource = DigOUT0 - DigOUT3

Attention

In the standard mvBlueFOX DigOUT2 and DigOUT3 are internal signals, however, they can be used for
this intention.

Note

Make sure that you adjust the ImageRequestTimeout_ms either to 0 (infinite)(this is the default
value) or to a reasonable value that is larger than the actual exposure time in order not to end up with
timeouts resulting from the buffer timeout being smaller than the actual time needed for exposing, trans-
ferring and capturing the image:

ImageRequestTimeout_ms = 0 # or reasonable value

Now request a single image:

imageRequestSingle

Then the digital output is set and reset. Between these two instructions you can include source code to get the
desired exposure time.

The DigOUT which was chosen in TriggerSource
DigitalOutput* pOut = getOutput(digital output)
pOut->set();

Wait as long as the exposure should continue.

pOut->reset();

Afterwards you will get the image.

If you change the state of corresponding output twice this will also work with ImpactControlCenter.

Generated by Doxygen

19.1 Introducing acquisition / recording possibilities 111

19.1.2 Using Video Stream Recording

With the FFmpeg libraries it is possible to record an Impact Acquire image stream into a compressed video stream.

Since

2.39.0

19.1.2.1 Requirements Since the Impact Acquire API internally uses FFmpeg to record video streams, the
FFmpeg libraries need to be present on the target system as well. They can either be built OR installed into the
systems default library search path OR installed somewhere and afterwards an environment variable MVIMPACT←↩

_ACQUIRE_FFMPEG_DIR can be defined that points to the folder containing the libraries.

Note

Please make sure that you fully understand the license coming with FFmpeg! Have a look at the corre-
sponding legal section inside any of the SDK manuals.

At least FFmpeg 4.x is needed. Older versions of the FFmpeg API are NOT compatible!

19.1.2.1.1 Windows

1. Go to https://ffmpeg.org/download.html and download the dynamic libraries of FFmpeg (ver-
sion >= 4.x) according to your operating system (e.g. 'ffmpeg-20200809-6e951d0-win64-shared.zip')

2. Extract the ∗.zip file under '${MVIMPACT_ACQUIRE_DIR}/Toolkits'.

3. Rename the file to 'ffmpeg-4.2.2-win64-shared'(64-bit)/'ffmpeg-4.2.2-win32-shared'(32-bit) OR set an environ-
ment variable e.g. 'MVIMPACT_ACQUIRE_FFMPEG_DIR' which points to the folder containing the libraries.

19.1.2.2 Recording in ImpactControlCenter In ImpactControlCenter, a video stream can be recorded by the
'Start', 'Pause' and 'Stop' buttons at the top right tool-bar. They are however inactive when the video stream record-
ing mode is deactivated OR when the video stream is not correctly set up.

Figure 1: Video stream recording control buttons (inactive)

A video stream needs to be set up first to be able to get recorded. To do so:

1. Select the device to use and open it by clicking on the 'Use' button.

2. Navigate to the 'Capture' menu and click on the 'Video Stream Recording...' option to start a setup dialog.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/index.html#LegalNotice_UsedThirdPartySoftware_FFmpeg
https://ffmpeg.org/download.html

112

Figure 2: Click 'Video Stream Recording...'

3. A setup dialog will then be initialized as follows. Please read the setup hints in the text box for more informa-
tion.

Generated by Doxygen

19.1 Introducing acquisition / recording possibilities 113

Figure 3: Video stream recording setup dialog

4. Enable the video stream recording mode. Choose a pixel format (e.g. 'YUV422Packed' or 'YUV422Planar')
that will be generated by the device driver and used by FFmpeg for video stream encoding. Then click on
'Select an output file' to create/choose a file to hold the recorded video stream.

Generated by Doxygen

114

Figure 4: Enable the video stream recording mode and set up device driver related parameters

5. In the file selector, choose a file type (e.g. '∗.mp4' or '∗.m2v') and enter a file name.

Generated by Doxygen

19.1 Introducing acquisition / recording possibilities 115

Figure 5: Select an output file

6. Set up video stream related parameters accordingly. In the check boxes below, users are allowed to choose
whether to synchronize acquisition stop with recording stop and whether to overwrite the already recorded
video stream if the currently selected output file has the same file name as the previous one.

Generated by Doxygen

116

Figure 6: Set up video stream related parameters

7. Once the video stream recording has been set up, click 'Apply' or 'Ok' to apply the current settings. Afterwards,
a log message in the analysis output will indicate whether the current settings have been applied successfully.
If successful, the 'Start' control button at the top right tool-bar will be enabled.

Generated by Doxygen

19.1 Introducing acquisition / recording possibilities 117

Figure 7: Apply the current settings

Note

When deactivating the video stream recording, uncheck the 'Enable video stream recording mode' and
then click 'Apply' or 'Ok' for the settings to take effect.

Once the settings have been applied, users can control the recording process via the 'Start', 'Pause' and 'Stop'
buttons:

• Start recording: Click the 'Start' control button to start recording the video stream. The current recording
status and information will be displayed in the analysis output. During recording, the setup dialog as well as
the 'Start' button will be disabled. The 'Pause' and 'Stop' buttons will then be enabled.

Generated by Doxygen

118

Figure 8: Start recording

• Pause recording: Click the 'Pause' button to pause a running recording. The current recording status will be
displayed in the analysis output.

Figure 9: Pause recording

Generated by Doxygen

19.1 Introducing acquisition / recording possibilities 119

• Resume recording: Click the 'Pause' button to resume a paused recording. The current recording status will
be displayed in the analysis output.

Figure 10: Resume recording

• Stop recording: Click the 'Stop' button to stop recording the video stream. The current recording status and
information will be displayed in the analysis output. Once the recording has been stopped, the setup dialog
as well as the 'Start' button will be enabled again. The 'Pause' and 'Stop' buttons will then be disabled.

Generated by Doxygen

120

Figure 11: Stop recording

When recording to an output file which has the same file name as the previous one while overwriting the recorded
content is not desired:

1. When clicking 'Start', a file selector will pop up to ask users to create a new output file with the same file type
as the previous one. If a new set of parameters of the video stream recording is needed, please click 'Cancel'
in the file selector and re-configure parameters in the setup dialog.

Figure 12: Select a new file when starting to record to an output file with the same file name as the previous
one without overwriting

2. Once a new file has been created, the video stream will start to get recorded. The current recording status
and information will be displayed in the analysis output. During recording, the setup dialog as well as the
'Start' button will be disabled. The 'Pause' and 'Stop' buttons will then be enabled.

Generated by Doxygen

19.1 Introducing acquisition / recording possibilities 121

Figure 13: Start recording to an output file with the same file name as the previous one without overwriting

19.1.2.3 Recording Using The API
Please refer to the example on how to record a video stream using Impact Acquire C++ API: Continuous←↩

CaptureFFmpeg.cpp or have a look at the VideoStream class.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/ContinuousCaptureFFmpeg_8cpp-example.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/ContinuousCaptureFFmpeg_8cpp-example.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1labs_1_1VideoStream.html

122

19.2 Improving the acquisition / image quality

There are several use cases concerning the acquisition / image quality of the camera:

• Correcting image errors of a sensor

• Optimizing the color/luminance fidelity of the camera

• Working With Gain And Black-Level Values Per Color Channel

19.2.1 Correcting image errors of a sensor

19.2.1.1 Defective Pixel Correction Due to random process deviations, technical limitations of the sensors, etc.
there are different reasons that image sensors have image errors. Balluff provides several procedures to correct
these errors, by default these are host-based calculations, however some device families support device-based
corrections, which saves dozens of % CPU load and lowers latency.

Device Family Algorithm-←↩

Based de-
tection and
correction

List-Based cor-
rection

Storing facility
for defective-
pixel list

Flat-Field Cor-
rection (Host)

Flat-Field Cor-
rection (Device)

BVS CA-GX0 - - X X X
BVS CA-GX2 If bin-

ning/decimation
is on -> no list
is stored

X X X

BVS CA-GT1 X - - X X
BVS CA-SF If bin-

ning/decimation
is on -> no list
is stored

X X X -

Generally, removing defect pixels requires two sub-tasks:

• Detection of defective pixels

• Correction of defective pixels

Both tasks can performed in different "locations":

• Detection and correction on the host using Impact Acquire

• Detection on the host using Impact Acquire, correction on the device using the device's mvDefective←↩

PixelCorrectionControl in the list-based mode

• Detection and correction on the camera using mvDefectivePixelCorrectionControl in the
algorithm-based mode.

If detection is not happening in real-time, meaning during the image acquisition itself, it is necessary to store the
detected defects somewhere. This can be either on the device or the host or both.

Generated by Doxygen

19.2 Improving the acquisition / image quality 123

19.2.1.1.1 Host-based defect pixel detection As mentioned, the defect pixel list can be generated using Impact
Acquire. Since there are three types of defects, Impact Acquire offers three calibration methods for detection:

1. leaky pixel (in the dark)
which indicates pixels that produce a higher read out code than the average

2. hot pixel (in standard light conditions)
which indicates pixels that produce a higher non-proportional read out code when temperatures are rising

3. cold pixel (in standard light conditions)
which indicates pixels that produce a lower read out code than average when the sensor is exposed (e.g.
caused by dust particles on the sensor)

Note

Please use either an Mono or RAW Bayer image format when detecting defective pixel data in the image.

19.2.1.1.2 Detecting leaky pixels To detect leaky pixels the following steps are necessary:

1. Set gain ("Setting -> Base -> Camera -> GenICam -> Analog Control ->
Gain = 0 dB") and exposure time "Setting -> Base -> Camera -> GenICam ->
Acquisition Control -> ExposureTime = 360 msec" to the given operating conditions
The total number of defective pixels found in the array depend on the gain and the exposure time.

2. Black out the lens completely

3. Set the (Filter-) "Mode = Calibrate leaky pixel"

4. Acquire an image (e.g. by pressing Acquire in ImpactControlCenter with "Acquisition Mode =
SingleFrame")

The filter checks:

Pixel > LeakyPixelDeviation_ADCLimit // (default value: 50)

All pixels above this value are considered as leaky pixel.

19.2.1.1.3 Detecting hot or cold pixels

Note

With "Mode = Calibrate Hot And Cold Pixel" you can execute both detections at the same time.

To detect hot or cold pixels the following steps are necessary:

1. You will need a uniform sensor illumination approx. 50 - 70 % saturation (which means an average gray value
between 128 and 180)

2. Set the (Filter-) "Mode = Calibrate Hot Pixel" or "Mode = Calibrate Cold Pixel" or
"Mode = Calibrate Hot And Cold Pixel"

3. Acquire an image (e.g. by pressing Acquire in ImpactControlCenter with "Acquisition Mode =
SingleFrame")

The filter checks:

Pixel > T[hot] // (default value: 15 %)

// T[hot] = deviation of the average gray value

Pixel < T[cold] // (default value: 15 %)

// T[cold] = deviation of the average gray value

Generated by Doxygen

124

Note

Repeating the defective pixel corrections will accumulate the correction data which leads to a higher value
in "DefectivePixelsFound". If you want to reset the correction data or repeat the correction
process you have to set the filter mode to "Reset Calibration Data". In order to limit the
amount of defective pixels detected the "DefectivePixelsMaxDetectionCount" property can
be used.

Figure 1: Image corrections: DefectivePixelsFilter

19.2.1.1.4 Storing defective pixel data on the device To save and load the defective pixel data, appropriate
functions are available:

• "int mvDefectivePixelDataLoad(void)"

• "int mvDefectivePixelDataSave(void)"

The section "Setting -> Base -> ImageProcessing -> DefectivePixelsFilter" was also extended (see Figure 2). First,
the "DefectivePixelsFound" indicates the number of found defective pixels. The coordinates are available
through the properties "DefectivePixelOffsetX" and "DefectivePixelOffsetY" now. In addition
to that it is possible to edit, add and delete these values manually (via right-click on the "DefectivePixel←↩

Offset" and select "Append Value" or "Delete Last Value"). Second, with the functions

• "int mvDefectivePixelReadFromDevice(void)"

• "int mvDefectivePixelWriteToDevice(void)"

Generated by Doxygen

19.2 Improving the acquisition / image quality 125

you can exchange the data from the filter with the device and vice versa.

Figure 2: Image corrections: DefectivePixelsFilter (since driver version 2.17.1 and firmware version 2.12.406)

Just right-click on "mvDefectivePixelWriteToDevice" and click on "Execute" to write the data to the
device (and hand over the data to the Storing pixel data on the device). To permanently store the data inside the
device s non-volatile memory afterwards "mvDefectivePixelDataSave" must be called as well!

Generated by Doxygen

126

Figure 3: Defective pixel data are written to the device (since driver version 2.17.1 and firmware version 2.12.406)

While opening the device, the device will load the defective pixel data from the device. If there are pixels in the
filter available (via calibration), nevertheless you can load the values from the device. In this case the values will be
merged with the existing ones. I.e., new ones are added and duplicates are removed.

19.2.1.1.5 Host-based defect pixel correction After a defect-list is generated, a host-based correction can be
performed using Impact Acquire.

To correct the defective pixels various substitution methods exist:

1. "Replace 3x1 average"
which substitutes the detected defective pixels with the average value from the left and right neighboring pixel
(3x1)

2. "Replace 3x3 median"
which substitutes the detected defective pixels with the median value calculated from the nearest neighboring
in a 3 by 3 region

3. "Replace 3x3 Filtered Data Averaged"
which substitutes and treats the detected defective pixels as if they have been processed with a 3 by 3 filter
algorithm before reaching this filter
Only recommended for devices which do not offer a defective pixel compensation; packed RGB or packed
YUV444 data is needed. See enumeration value dpfmReplaceDefectivePixelAfter3x3Filter
in the corresponding API manual for additional details about this algorithm and when and why it is needed

Generated by Doxygen

19.2 Improving the acquisition / image quality 127

19.2.1.1.6 List-based defect pixel correction on the device As described before, it is possible to upload lists
of defect pixel onto the device. Different algorithms can be used to determine whether a pixel is defective or not,
which is dependent of how much it is allowed a pixel to deviate, temperature, gain, and exposure time. As described
before, the list-based correction is deterministic, meaning it is exactly known which pixels will be corrected.

Anyhow, the list-based correction has some disadvantages:

• A default list is stored in the device during production, but this might to fit to the target application because of
much different temperature / exposure time setting
→ It is necessary to create the list using a detection algorithm (or Impact Acquire support)

• During time and sensor aging, new defects could/will appear

• It doesn’t work in binning/decimation modes

• The memory for storing defective pixels is limited

19.2.1.1.7 Adaptive / algorithm-based correction on the device In this case, the device performs detection
and correction on-the-fly without using any defect-list.

The adaptive correction addresses the above-mentioned disadvantages of the list-based method. While the correc-
tion itself (this is which pixels are used to correct an identified defect) is the same, no static information from a list is
used, instead they are detected "on the fly".

To use reasonable thresholds, knowledge of the noise statistics of the sensor is used to detect the outliers. These
will be corrected also on the fly. Because this is a dynamic approach, it also works in binning/decimation modes
and would also detect new appearing defects.

Nevertheless, there are some disadvantages:

• It is non-deterministic

• Wrong positives can be detected, meaning non-defect pixels could be treated as defect

• If pixels are at the edge of the used thresholds, it could be corrected in one frame, but not in the next

On BVS CA-SF devices, the adaptive correction is always used if:

• There is no list stored on the device

• Binning or decimation is used

19.2.1.2 Flat-Field Correction
Each pixel of a sensor chip is a single detector with its own properties. Particularly, this pertains to the sensitivity
as the case may be the spectral sensitivity. To solve this problem (including lens and illumination variations), a plain
and equally "colored" calibration plate (e.g. white or gray) as a flat-field is snapped, which will be used to correct
the original image. Between flat-field correction and the future application you must not change the optic. To reduce
errors while doing the flat-field correction, a saturation between 50 % and 75 % of the flat-field in the histogram is
convenient.

Generated by Doxygen

128

Note

Flat-field correction can also be used as a destructive watermark and works for all f-stops.

To make a flat field correction following steps are necessary:

1. You need a plain and equally "colored" calibration plate (e.g. white or gray)

2. No single pixel may be saturated - that's why we recommend to set the maximum gray level in the brightest
area to max. 75% of the gray scale (i.e., to gray values below 190 when using 8-bit values)

3. Choose a BayerXY in "Setting -> Base -> Camera -> GenICam -> Image Format Control -> PixelFormat".

4. Set the (Filter-) "Mode = Calibrate" (Figure 4)

5. Start a Live snap ("Acquire" with "Acquisition Mode = Continuous")

6. Finally, you have to activate the correction: Set the (Filter-) "Mode = On"

7. Save the settings including the correction data via "Action -> Capture Settings -> Save
Active Device Settings"
(Settings can be saved in the Windows registry or in a file)

Note

After having re-started the device you have to reload the capture settings vice versa.

The filter snaps a number of images (according to the value of the CalibrationImageCount, e.g. 5) and
averages the flat-field images to one correction image.

Generated by Doxygen

19.2 Improving the acquisition / image quality 129

Figure 4: Image corrections: Host-based flat field correction

19.2.1.2.1 Host-based Flat-Field Correction With Calibration AOI
In some cases it might be necessary to use just a specific area within the device's field of view to calculate the
correction values. In this case just a specific AOI will be used to calculate the correction factor.

You can set the "host-based flat field correction" in the following way:

1. All necessary setting can be found under "ImageProcessing"-> "FlatfieldFilter".

2. Stop "Continuous" acquisition mode.

3. Set "CalibrationImageCount" to, for example, 5.

4. Set "Mode" to "Calibrate".

5. Set "CalibrationAoiMode" to "UseAoi".

6. Set the properties ("X, Y and W, H") appeared under "CalibrationAOI" to the desired AOI.

7. Start "Continuous" acquisition mode.

8. Finally, you have to activate the correction: Set the "Mode" to "On".

Generated by Doxygen

130

Figure 5: Image corrections: Host-based flat field correction with calibration AOI

19.2.1.2.2 Host-based Flat-Field Correction With Correction AOI
In some cases it might be necessary to correct just a specific area in the device's filed of view. In this case the
correction values are only applied to a specific area. For the rest of the image, the correction factor will be just 1.0.

You can set the "host-based flat field correction" in the following way:

1. All necessary setting can be found under "ImageProcessing" -> "FlatfieldFilter".

2. Stop "Continuous" acquisition mode.

3. Set "CalibrationImageCount" to, for example, 5.

4. Set "Mode" to "Calibrate".

5. Start "Continuous" acquisition mode.

6. Now, you have to activate the correction: Set the "Mode" to "On".

7. Set "CorrectionAOIMode" to "UseAoi".

8. Finally use the properties ("X, Y and W, H") which appeared under "CorrectionAOI" to configure the desired
AOI.

Figure 6: Image corrections: Host-based flat field correction with correction AOI

Generated by Doxygen

19.2 Improving the acquisition / image quality 131

19.2.2 Optimizing the color/luminance fidelity of the camera

Purpose of this chapter is to optimize the color image of a camera, so that it looks as natural as possible on different
displays and for human vision.

This implies some linear and nonlinear operations (e.g. display color space or Gamma viewing LUT) which are
normally not necessary or recommended for machine vision algorithms. A standard monitor offers, for example,
several display modes like sRGB, "Adobe RGB", etc., which reproduce the very same color of a camera color
differently.

It should also be noted that users can choose for either

• camera based settings and adjustments or

• host based settings and adjustments or

• a combination of both.

Camera based settings are advantageous to achieve highest calculating precision, independent of the transmission
bit depth, lowest latency, because all calculations are performed in FPGA on the fly and low CPU load, because the
host is not invoked with these tasks. These camera based settings are

• gamma correction

• negative gain / gain

• look-up table (LUT)

• white balance

• offset

• saturation and color correction

Host based settings save transmission bandwidth at the expense of accuracy or latency and CPU load. Especially
performing gain, offset, and white balance in the camera while outputting RAW data to the host can be recom-
mended.

Of course host based settings can be used with all families of cameras (e.g. also mvBlueFOX).

Host based settings are:

• look-up table (LUTOperations)

• color correction (ColorTwist)

To show the different color behaviors, we take a color chart as a starting point:

Generated by Doxygen

132

Figure 1: Color chart as a starting point

If we take a SingleFrame image without any color optimizations, an image can be like this:

Figure 2: SingleFrame snap without color optimization

Figure 3: Corresponding histogram of the horizontal white to black profile

As you can see,

• saturation is missing,

• white is more light gray,

• black is more dark gray,

• etc.

Generated by Doxygen

19.2 Improving the acquisition / image quality 133

Note

You have to keep in mind that there are two types of images: the one generated in the camera and the
other one displayed on the computer monitor. Up-to-date monitors offer different display modes with
different color spaces (e.g. sRGB). According to the chosen color space, the display of the colors is
different.

The following figure shows the way to a perfect colored image

Figure 4: The way to a perfect colored image

including these process steps:

1. Do a Gamma correction (Luminance),

2. make a White balance and

3. Improve the Contrast.

4. Improve Saturation, and use a "color correction matrix" for both

(a) the sensor and / or

(b) the monitor.

The following sections will describe the single steps in detail.

19.2.2.1 Step 1: Gamma correction (Luminance)
First of all, a Gamma correction can be performed to change the image in a way how humans perceive light and
color.

For this, you can change either

• the exposure time,

• the aperture or

• the gain.

Generated by Doxygen

134

You can change the gain via ImpactControlCenter like the following way:

1. Click on "Setting -> Base -> Camera". There you can find

(a) "AutoGainControl" and

(b) "AutoExposeControl".

Figure 5: ImpactControlCenter: Setting -> Base -> Camera

You can turn them "On" or "Off". Using the auto controls you can set limits of the auto control; without you
can set the exact value.

After gamma correction, the image will look like this:

Generated by Doxygen

19.2 Improving the acquisition / image quality 135

Figure 6: After gamma correction

Figure 7: Corresponding histogram after gamma correction

Note

As mentioned above, you can do a gamma correction via ("Setting -> Base -> ImageProcessing ->
LUTOperations"):

Generated by Doxygen

136

Figure 8: LUTOperations dialog

Just set "LUTEnable" to "On" and adapt the single LUTs like (LUT-0, LUT-1, etc.).

19.2.2.2 Step 2: White Balance
As you can see in the histogram, the colors red and blue are below green. Using green as a reference, we can
optimize the white balance via "Setting -> Base -> ImageProcessing" ("WhiteBalanceCalibration"):

Please have a look at "White Balancing A Color Camera" in the "Impact Acquire SDK GUI Applications"
manual for more information for an automatic white balance with ImpactControlCenter.

To adapt the single colors you can use the "WhiteBalanceSettings-1".

After optimizing white balance, the image will look like this:

Generated by Doxygen

19.2 Improving the acquisition / image quality 137

Figure 9: After white balance

Figure 10: Corresponding histogram after white balance

19.2.2.3 Step 3: Contrast
Still, black is more a darker gray. To optimize the contrast you can use "Setting -> Base -> ImageProcessing ->
LUTControl" as shown in Figure 8.

The image will look like this now:

Figure 11: After adapting contrast

Generated by Doxygen

138

Figure 12: Corresponding histogram after adapting contrast

19.2.2.4 Step 4: Saturation and Color Correction Matrix (CCM)
Still saturation is missing. To change this, the "Color Transformation Control" can be used ("Setting -> Base ->
ImageProcessing -> ColorTwist"):

1. Click on "Color Twist Enable" and

2. click on "Wizard" to start the saturation via "Color Transformation Control" wizard tool (since firmware version
1.4.57).

Figure 13: Selected Color Twist Enable and click on wizard will start wizard tool

3. Now, you can adjust the saturation e.g. "1.1".

Generated by Doxygen

19.2 Improving the acquisition / image quality 139

Figure 14: Saturation via Color Transformation Control dialog

4. Afterwards, click on "Enable".

5. Since driver version 2.2.2, it is possible to set the special color correction matrices at

(a) the input (sensor),

(b) the output side (monitor) and

(c) the saturation itself using this wizard.

6. Select the specific input and output matrix and

7. click on "Enable".

8. As you can see, the correction is done by the host ("Host Color Correction Controls").

Note

It is not possible to save the settings of the "Host Color Correction Controls" in the mvBlueFOX.
Unlike in the case of Figure 14, the buttons to write the "Device Color Correction Controls" to the
mvBlueFOX are not active.

9. Finally, click on "Apply".

After the saturation, the image will look like this:

Figure 15: After adapting saturation

Generated by Doxygen

140

Figure 16: Corresponding histogram after adapting saturation

19.2.3 Working With Gain And Black-Level Values Per Color Channel

In many low-lighting applications the gain needs to be increased to enhance the brighness of the images. However,
while the image brightness is increased, the black-level of the image is also increased, which in many cases should
be avoided. With the help of the GainOffsetKnee filter it is possible to correct/adjust the overall black-level as well
as the black-level per color channel, even when the gain is applied. Figure 1 shows the working principle of the
GainOffsetKnee filter.

Figure 1: The GainOffsetKnee filter working principle

The GainOffsetKnee filter is one of the image processing methods performed on the host. It allows you to adjust:

• The overall offset (i.e. overall black-level) of an image.

• The individual gain per color channel.

• The individual offset (i.e. individual black-level) per color channel.

Generated by Doxygen

19.2 Improving the acquisition / image quality 141

19.2.3.1 Configuration in ImpactControlCenter Here is how to configure the GainOffsetKnee filter in Impact←↩

ControlCenter and the impact the filter has on an image:

1. The GainOffsetKnee filter is located under "Setting -> Base -> ImageProcessing".

Figure 2: The GainOffsetKnee filter option in ImpactControlCenter

2. Once the GainOffsetKnee filter is activated, the configuration field will be displayed (see Figure 3). As an
example, the current RGB image is shown in Figure 4 and its histogram in Figure 5.

Figure 3: The configuration field for the GainOffsetKnee filter

Generated by Doxygen

142

Figure 4: An image without the GainOffsetKnee filter

Figure 5: The histogram of Figure 3

3. The overall offset can be assigned using the 'GainOffsetKneeMasterOffset_pc'. A positive offset increases
the black-level of the image, whereas a negative offset reduces it. To visualize the effect, an offset of 5% is
given as an example, which means that the overall black-level of the image will be increased by 5% of the
max. pixel value (i.e. 255 in this example). As a result, the overall black-level in the current histogram (see
Figure 8) has been increase by 12.75 (which is 5% x 255) comparing to the original histogram (see Figure 5).

Generated by Doxygen

19.2 Improving the acquisition / image quality 143

Figure 6: Assign overall/master offset to the image

Figure 7: The image with 5% overall offset

Generated by Doxygen

144

Figure 8: The histogram with 5% overall offset

4. Among the GainOffsetKneeChannels there are 4 channels. For mono images, only channel 0 is used. For
RGB images, channel 0-2 are used: red channel, green channel and blue channel respectively. For Bayer
images, channel 0-3 are used. For more description please refer to Figure 3. As an example, a gain of
1.0625dB is applied to the red channel. As shown in Figure 10 and Figure 11, the grey-level of the red
channel is increased while the other two channels remain the same.

Figure 9: Assign individual gain to the red channel

Generated by Doxygen

19.2 Improving the acquisition / image quality 145

Figure 10: The image with 1.0625dB gain in the red channel

Figure 11: The histogram with 1.0625dB gain in the red channel

5. The individual black-level can be assigned using the channel specific 'Offset_pc'. Analogous to 'GainOffset←↩

KneeMasterOffset_pc', a positive offset increases the black-level of the channel, whereas a negative offset
reduces it. To visualize the effect, an offset of 5% is given as an example in the red channel. The histogram
(see Figure 14) shows therefore a 12.75 (which is 5% x 255) offset increase in the red channel.

Generated by Doxygen

146

Figure 12: Assign individual offset to the red channel

Figure 13: The image with 5% offset in the red channel

Generated by Doxygen

19.2 Improving the acquisition / image quality 147

Figure 14: The histogram with 5% offset in the red channel

19.2.3.2 Configuration Using The API Depending on the programming language you are working with the
names of classes, namespaces and properties might vary slightly. For C++ please refer to the GainOffset←↩

KneeChannelParameters class and the Image Processing class for some guidance, for other lan-
guages when searching for the offset or knee properties similar things can be found.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1GainOffsetKneeChannelParameters.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1GainOffsetKneeChannelParameters.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1ImageProcessing.html

148

19.3 Saving data on the device

Note

As described in "Storing, Restoring And Managing Settings" in the "Impact Acquire SDK GUI
Applications" manual, it is also possible to save the settings as an XML file on the host sys-
tem. You can find further information about for example the XML compatibilities of the different
driver versions in the Impact Acquire SDK manuals and the according setting classes: https←↩

://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK←↩

_CPP/classmvIMPACT_1_1acquire_1_1FunctionInterface.html (C++)

There are several use cases concerning device memory:

• Creating user data entries

19.3.1 Creating user data entries

19.3.1.1 Basics about user data
It is possible to save arbitrary user specific data on the hardware's non-volatile memory. The amount of possible
entries depends on the length of the individual entries as well as the size of the devices non-volatile memory
reserved for storing:

• mvBlueFOX,

• mvBlueFOX-M,

• BVS CA-MLC,

• BVS CA-SF,

• BVS CA-GX0,

• BVS CA-GX2,

• BVS CA-GT1, and

• BVS CA-BN

currently offer 512 bytes of user accessible non-volatile memory of which 12 bytes are needed to store header
information leaving 500 bytes for user specific data.

One entry will currently consume:
1 + <length_of_name (up to 255 chars)> + 2 + <length_of_data (up to 65535 bytes)> + 1 (access mode) bytes

as well as an optional:
1 + <length_of_password> bytes per entry if a password has been defined for this particular entry

It is possible to save either String or Binary data in the data property of each entry. When storing binary data
please note, that this data internally will be stored in Base64 format thus the amount of memory required is 4/3
time the binary data size.

The UserData can be accessed and created using ImpactControlCenter (the device has to be closed). In the section
"UserData" you will find the entries and following methods:

• "CreateUserDataEntry"

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1FunctionInterface.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1FunctionInterface.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1FunctionInterface.html
https://en.wikipedia.org/wiki/Base64

19.3 Saving data on the device 149

• "DeleteUserDataEntry"

• "WriteDataToHardware"

Figure 1: ImpactControlCenter - section "UserData -> Entries"

To create a user data entry, you have to

• Right click on "CreateUserDataEntry"

• Select "Execute" from the popup menu.
An entry will be created.

• In "Entries" click on the entry you want to adjust and modify the data fields.
To permanently commit a modification made with the keyboard the ENTER key must be pressed.

• To save the data on the device, you have to execute "WriteDataToHardware". Please have a look at
the "Output" tab in the lower right section of the screen as shown in Figure 2, to see if the write process
returned with no errors. If an error occurs a message box will pop up.

Generated by Doxygen

150

Figure 2: ImpactControlCenter - analysis tool "Output"

19.3.1.2 Coding sample
If you e.g. want to use the UserData as dongle mechanism (with binary data), it is not suggested to use
ImpactControlCenter. In this case you have to program the handling of the user data.

See also

mvIMPACT::acquire::UserDataEntry in the manual for the corresponding programming language at the
manuals section.

19.4 Working with several cameras simultaneously

There are several use cases concerning multiple cameras:

• Using 2 BVS CA-MLC cameras in Master-Slave mode

• Synchronize the cameras to expose at the same time

19.4.1 Using 2 BVS CA-MLC cameras in Master-Slave mode

19.4.1.1 Scenario If you want to have a synchronized stereo camera array (e.g. BVS CA-MLC-202dG) with a
rolling shutter master camera (e.g. BVS CA-MLC-202dC), you can solve this task as follows:

1. Please check, if all cameras are using firmware version 1.12.16 or newer.

2. Now, open ImpactControlCenter and set the master camera:

Figure 1: ImpactControlCenter - Master camera outputs at DigOut 0 a frame synchronous V-Sync pulse

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product
https://www.balluff.com/en-de/documentation-for-your-balluff-product

19.4 Working with several cameras simultaneously 151

Note

Alternatively, it is also possible to use HRTC - Hardware Real-Time Controller HRTC to set the
master camera. The following sample shows the HRTC - Hardware Real-Time Controller HRTC
program which sets the trigger signal and the digital output.
The sample will lead to a constant frame rate of 16 fps (50000 us + 10000 us = 60000 us for one
cycle. 1 / 60000 us ∗ 1000000 = 16.67 Hz).

Generated by Doxygen

152

Figure 2: ImpactControlCenter - HRTC program sets the trigger signal and the digital output

Do not forget to set HRTC as the trigger source for the master camera.

Generated by Doxygen

19.4 Working with several cameras simultaneously 153

Figure 3: ImpactControlCenter - HRTC is the trigger source for the master camera

3. Then, set the slave with ImpactControlCenter :

Figure 4: ImpactControlCenter - Slave camera with TriggerMode "OnHighLevel" at DigIn 0

19.4.1.1.1 Connection using -UOW versions (opto-isolated inputs and outputs) The devices should be con-
nected like this:

Generated by Doxygen

154

Figure 5: Connection with opto-isolated digital inputs and outputs

Symbol Comment Input voltage Min Typ Max Unit

Uext. External power 3.←↩

3
30 V

Rout Resistor digital output 2 kOhm

Rin Resistor digital input
3.3 V .. 5 V 0 kOhm
12 V 0.68 kOhm
24 V 2 kOhm

You can add further slaves.

19.4.1.1.2 Connection using -UTW versions (TTL inputs and outputs) The devices should be connected like
this:

Figure 6: Connection with TTL digital inputs and outputs

For this case we offer a synchronization cable called "KS-MLC-IO-TTL 00.5".

Generated by Doxygen

19.4 Working with several cameras simultaneously 155

Note

There a no further slaves possible.

See also

• Dimensions and connectors Figure 18 pin reference.

• Dimensions and connectors Table of connector pin out of "12-pin through-hole type shrouded header
(USB / Dig I/O)".

• Dimensions and connectors Electrical drawing "opto-isolated digital inputs" and "opto-isolated digital out-
puts".

• A predefined frame rate is also possible using HRTC.

19.4.2 Synchronize the cameras to expose at the same time

This can be achieved by connecting the same external trigger signal to one of the digital inputs of each camera like
it's shown in the following figure:

Figure 1: Electrical setup for sync. cameras

Each camera then has to be configured for external trigger somehow like in the image below:

Generated by Doxygen

156

Figure 2: ImpactControlCenter - Setup for sync. cameras

This assumes that the image acquisition shall start with the rising edge of the trigger signal. Every camera must be
configured like this. Each rising edge of the external trigger signal then will start the exposure of a new image at
the same time on each camera. Every trigger signal that will occur during the exposure of an image will be silently
discarded.

19.5 Working with HDR (High Dynamic Range Control)

There are several use cases concerning High Dynamic Range Control:

• Adjusting sensor of camera models with onsemi MT9V034

• Adjusting sensor of camera models with onsemi MT9M034

19.5.1 Adjusting sensor of camera models with onsemi MT9V034

19.5.1.1 Introduction
The HDR (High Dynamic Range) mode available for cameras built with the onsemi MT9V034 chip increases the
usable contrast range. This is achieved by dividing the integration time in two or three phases. The exposure time
proportion of the three phases can be set independently. Furthermore, it can be set, how much signal of each phase
is charged.

Generated by Doxygen

19.5 Working with HDR (High Dynamic Range Control) 157

19.5.1.2 Functionality

Figure 1: Diagram of the HDR mode

19.5.1.2.1 Description

• "Phase 0"

– During T1 all pixels are integrated until they reach the defined signal level of Knee Point 1.

– If one pixel reaches the level, the integration will be stopped.

– During T1 no pixel can reached a level higher than P1.

• "Phase 1"

– During T2 all pixels are integrated until they reach the defined signal level of Knee Point 2.

– T2 is always smaller than T1 so that the percentage compared to the total exposure time is lower.

– Thus, the signal increase during T2 is lower as during T1.

– The max. signal level of Knee Point 2 is higher than of Knee Point 1.

• "Phase 2"

– During T2 all pixels are integrated until the possible saturation.

– T3 is always smaller than T2, so that the percentage compared to the total exposure time is again lower
here.

– Thus, the signal increase during T3 is lower as during T2.

For this reason, darker pixels can be integrated during the complete integration time and the sensor reaches its full
sensitivity. Pixels, which are limited at each Knee Points, lose a part of their integration time - even more, if they are
brighter.

Generated by Doxygen

158

Figure 2: Integration time of different bright pixels

In the diagram you can see the signal line of three different bright pixels. The slope depends of the light intensity ,
thus it is per pixel the same here (granted that the light intensity is temporally constant). Given that the very light
pixel is limited soon at the signal levels S1 and S2, the whole integration time is lower compared to the dark pixel. In
practice, the parts of the integration time are very different. T1, for example, is 95% of Ttotal, T2 only 4% and T3 only
1%. Thus, a high decrease of the very light pixels can be achieved. However, if you want to divide the integration
thresholds into three parts that is S2 = 2 x S1 and S3 = 3 x S1, a hundredfold brightness of one pixel's step from S2
to S3, compared to the step from 0 and S1 is needed.

19.5.1.3 Using HDR
Figure 3 is showing the usage of the HDR mode. Here, an image sequence was created with the integration time
between 10us and 100ms. You can see three slopes of the HDR mode. The "waves" result from the rounding during
the three exposure phases. They can only be partly adjusted during one line period of the sensor.

Figure 3: ImpactControlCenter HDR screenshot

Generated by Doxygen

19.5 Working with HDR (High Dynamic Range Control) 159

19.5.1.3.1 Notes about the usage of the HDR mode

• In the HDR mode, the basic amplification is reduced by approx. 0.7, to utilize a huge, dynamic area of the
sensor.

• If the manual gain is raised, this effect will be reversed.

• Exposure times, which are too low, make no sense. During the third phase, if the exposure time reaches a
possible minimum (one line period), a sensible lower limit is reached.

19.5.1.3.2 Possible settings
Possible settings of HDR mode are:

"HDREnable":

• "Off": Standard mode

• "On": HDR mode on, reduced amplification:

• "HDRMode":

– "Fixed": Fixed setting with 2 Knee Points. modulation Phase 0 .. 33% / 1 .. 66% / 2 .. 100%

– "Fixed0": Phase 1 exposure 12.5% , Phase 2 31.25% of total exposure

– "Fixed1": Phase 1 exposure 6.25% , Phase 2 1.56% of total exposure

– "Fixed2": Phase 1 exposure 3.12% , Phase 2 0.78% of total exposure

– "Fixed3": Phase 1 exposure 1.56% , Phase 2 0.39% of total exposure

– "Fixed4": Phase 1 exposure 0.78% , Phase 2 0.195% of total exposure

– "Fixed5": Phase 1 exposure 0.39% , Phase 2 0.049% of total exposure

• "User": Variable setting of the Knee Point (1..2), threshold and exposure time proportion

– "HDRKneePointCount": Number of Knee Points (1..2)

– "HDRKneePoints"

* "HDRKneePoint-0"
· "HDRExposure_ppm": Proportion of Phase 0 compared to total exposure in parts per million

(ppm)

· "HDRControlVoltage_mV": Control voltage for exposure threshold of first Knee Point
(3030mV is equivalent to approx. 33%)

* "HDRKneePoint-1"
· "HDRExposure_ppm": Proportion of Phase 1 compared to total exposure in parts per million

(ppm)

· "HDRControlVoltage_mV": Control voltage for exposure threshold of first Knee Point
(2630mV is equivalent to approx. 66%)

19.5.2 Adjusting sensor of camera models with onsemi MT9M034

19.5.2.1 Introduction
The HDR (High Dynamic Range) mode of the Aptina sensor increases the usable contrast range. This is achieved
by dividing the integration time in three phases. The exposure time proportion of the three phases can be set
independently.

Generated by Doxygen

160

19.5.2.2 Functionality
To exceed the typical dynamic range, images are captured at 3 exposure times with given ratios for different expo-
sure times. The figure shows a multiple exposure capture using 3 different exposure times.

Figure 1: Multiple exposure capture using 3 different exposure times

Note

The longest exposure time (T1) represents the Exposure_us parameter you can set in ImpactControl←↩

Center.

Afterwards, the signal is fully linearized before going through a compander to be output as a piece-wise linear signal.
the next figure shows this.

Generated by Doxygen

19.5 Working with HDR (High Dynamic Range Control) 161

Figure 2: Piece-wise linear signal

19.5.2.2.1 Description
Exposure ratios can be controlled by the program. Two rations are used: R1 = T1/T2 and R2 = T2/T3.

Increasing R1 and R2 will increase the dynamic range of the sensor at the cost of lower signal-to-noise ratio (and
vice versa).

19.5.2.2.2 Possible settings
Possible settings in HDR mode are:

• "HDREnable":

– "Off": Standard mode

– "On": HDR mode on, reduced amplification

* "HDRMode":

· "Fixed": Fixed setting with exposure-time-ratios: T1 -> T2 ratio / T2 -> T3 ratio

· "Fixed0": 8 / 4

· "Fixed1": 4 / 8

· "Fixed2": 8 / 8

· "Fixed3": 8 / 16

· "Fixed4": 16 / 16

· "Fixed5": 16 / 32

Generated by Doxygen

162

Figure 3: ImpactControlCenter - Working with the HDR mode

19.6 Working with I2C devices

Note

Please find a detailed description of the I2C interface class I2CControl in the "Impact Acquire SDK "
manuals.

• Working with the I2C interface (I2C Control)

• Using BVS CA-MLC with motorized lenses (MotorFocusControl)

Generated by Doxygen

19.6 Working with I2C devices 163

19.6.1 Working with the I2C interface (I2C Control)

19.6.1.1 Introduction As mentioned in the Device specific interface layout section of the Impact Acquire API
manuals, the "I2CControl" is a feature which allows the mvBlueFOX device to communicate with custom-specific
peripherals via the I2C interface.

19.6.1.2 Setting up the device The following steps will explain how to connect the mvBlueFOX with an I2C
device. In this use case, a LM75 I2C Digital Temperature Sensor is used:

Figure 1: ImpactControlCenter - I2C Interface Control

1. Start ImpactControlCenter

2. Initialize the mvBlueFOX device

3. Navigate to "Digital I/O -> I2CControl"

4. Enter the connection settings to address the I2C device memory (4).
E.g. to read the temperature of the example sensor, set I2CDeviceAddress to "0x09F".

5. Set I2CDeviceSubAddress to "0x00", because reading the temperature of this sensor does not need a sub
address.

6. Set I2CBufferLength (5) to 2, because this sensor stores the temperature in a register of two bytes length.

7. Set the I2COperationMode (1) to Read. The least significant bit (LSB) of the device address will automati-
cally be overwritten by 0 for writing and by 1 for reading.

Generated by Doxygen

164

8. Navigate to the int I2COperationExecute(void) function (2). Click on the 3 dots next to the function name
or right-click on the command and then select Execute from the context menu to send the current message
to the I2C device.

9. The I2COperationStatus property (3) will display if the operation was successful.

10. On success, the data is now displayed in the I2CBuffer property (5). This value is a hexadecimal number
and needs to be interpreted depending on the I2C device.

Note

The following I2C addresses will be blocked for access from an application:

i2c address range affected devices

0x20-0x3F all mvBlueFOX devices
0x66-0x67 all mvBlueFOX devices
0x90-0x91 mvBlueFOX-200w only

0xA0-0xA3 all mvBlueFOX devices
0xA6-0xA7 all mvBlueFOX devices
0xBA-0xBB mvBlueFOX-202a and mvBlueFOX-205 only

19.6.1.3 Programming the I2C interface The following lines of source code are meant to give an overview of
the possibilities of the I2CControl class.

I2CControl i2cc(pBF); // assuming ’pBF’ to be a valid ’Device*’ instance to an mvBlueFOX device
if(i2cc.I2COperationMode.isValid())
{

// direct property access
i2cc.I2CBufferLength.write(0);
i2cc.I2COperationMode.write(I2ComRead);
assert((i2cc.I2COperationExecute.call() == DMR_INVALID_PARAMETER) && "Unexpected driver behaviour");
assert((i2cc.I2COperationStatus.read() == I2CosNotEnoughData) && "Unexpected driver behaviour");
i2cc.I2CBufferLength.write(1);
// assuming we write to an invalid address
assert((i2cc.I2COperationExecute.call() == DMR_EXECUTION_FAILED) && "Unexpected driver behaviour");
assert((i2cc.I2COperationStatus.read() == I2CosFailure) && "Unexpected driver behaviour");
i2cc.I2COperationMode.write(I2ComWrite);
i2cc.I2CBuffer.writeBinary(string());
assert((i2cc.I2COperationExecute.call() == DMR_INVALID_PARAMETER) && "Unexpected driver behaviour");
assert((i2cc.I2COperationStatus.read() == I2CosNotEnoughData) && "Unexpected driver behaviour");
{

char binData[2] = { ’A’, ’B’ };
i2cc.I2CBuffer.writeBinary(string(binData, sizeof(binData)));

}
// assuming we write to an invalid address
assert((i2cc.I2COperationExecute.call() == DMR_EXECUTION_FAILED) && "Unexpected driver behaviour");
assert((i2cc.I2COperationStatus.read() == I2CosFailure) && "Unexpected driver behaviour");
// Write some data. This will only work if several conditions are met:
// - there is a device that can be written to at address 0xA6
// - the sub-address 0x04 is valid
// - the device is designed to work with 8 bit sub-addresses
// - the device can deal with 9 bytes in a single command
i2cc.I2CDeviceAddress.write(0xA6);
i2cc.I2CDeviceSubAddress.write(0x04);
i2cc.I2CDeviceSubAddressWidth.write(8);
{

char binData[9] = { ’D’, ’E’, ’A’, ’D’, ’ ’, ’B’, ’E’, ’E’, ’F’ };
i2cc.I2CBuffer.writeBinary(string(binData, sizeof(binData)));

}
i2cc.I2COperationMode.write(I2ComWrite);
int I2COperationExecuteResult = i2cc.I2COperationExecute.call();
if(I2COperationExecuteResult != DMR_NO_ERROR)
{

Generated by Doxygen

19.6 Working with I2C devices 165

printf("’I2COperationExecute’ write failed. Return value: %s(%d).\n", ImpactAcquireException::getErrorCodeAsString(I2COperationExecuteResult).c_str(), I2COperationExecuteResult);
}
printf("’I2COperationStatus’ after write: %s.\n", i2cc.I2COperationStatus.readS().c_str());
// Read some data. Similar condition as for write apply
const int bytesToRead = 4;
i2cc.I2CDeviceAddress.write(0xA8);
i2cc.I2CDeviceSubAddress.write(0x00);
i2cc.I2CDeviceSubAddressWidth.write(8);
i2cc.I2CBufferLength.write(bytesToRead); // read ’bytesToRead’ bytes
i2cc.I2COperationMode.write(I2ComRead);
i2cc.I2COperationExecute.call();
I2COperationExecuteResult = i2cc.I2COperationExecute.call();
if(I2COperationExecuteResult != DMR_NO_ERROR)
{

printf("’I2COperationExecute’ read failed. Return value: %s(%d).\n", ImpactAcquireException::getErrorCodeAsString(I2COperationExecuteResult).c_str(), I2COperationExecuteResult);
}
printf("’I2COperationStatus’ after read: %s.\n", i2cc.I2COperationStatus.readS().c_str());
if(i2cc.I2CBuffer.binaryDataBufferSize() != bytesToRead)
{

printf("’I2CBuffer’ reports %d bytes of data while %d bytes where expected.\n", i2cc.I2CBuffer.binaryDataBufferSize(), bytesToRead);
}
// usage of the convenience functions
i2cc.I2CWrite(0xA4, 0x00, 8, string("TEST"));
const string i2cReadBuffer = i2cc.I2CRead(0xA4, 0x00, 8, 4);

}
else
{

printf("I2CControl not available.\n");
}

Generated by Doxygen

166

19.6.2 Using BVS CA-MLC with motorized lenses (MotorFocusControl)

19.6.2.1 Introduction It is possible to use the BVS CA-MLC with a motorized lens mount without optical filter. To
control this lens mount you use either ImpactControlCenter or the class MotorFocusControl from Impact Acquire
for your own applications.

This camera option consists of a single-board camera module plus additional interface board. The camera is
equipped with a board-to-wire connector on the interface board for opto-coupled I/O connection and a Mini USB.
Other versions with TTL coupled inputs and outputs and without Mini USB connector are available on demand.
There is no optical filter in the light path. For color applications Balluff supplies S-mount lenses with IR absorbing
coating.

Important technical data of the motorized lens mount: (Consult Balluff for more detailed data, application notes and
the full lens command reference manual)

Lens Type (Lens not included), accepts M12x0.5mm, smaller
lenses to M8x0.35 with adapter from your lens supplier

Lens Weight∗ < 5 grams

Travel Range Up to 1.5 mm

Housing Dimension 20 x 22 x 16 mm

Max Image Sensor Area (image sensor not included) 17 x 17 x 1.25 mm (including 1/2" and 1/1.8" formats)

Speed > 5 mm/s

Resolution 0.5 um
Hysteresis None

Repeatability Uni-directional +/- 5 um

Bi-directional +/- 20 um
Linear Accuracy +/- 30 um

Angular alignment (Static tip/tilt) > +/- 1 degree

Angular movement (Dynamic tip/tilt) > +/- 0.15 degree

Static Concentricity > +/- 0.25 mm

Dynamic Concentricity > +/- 0.02 mm

Input Voltage 3.1 to 3.6 Volts

Input Power∗∗ < 0.5 Watts (5mm/s with 5g mass)
< 0.13 Watts quiescent

Temperature / RH∗∗∗ 5 ° to 70 °C (lower possible) < 95% RH non-
condensing

Mean Time Before Failure > 2M Cycles (fixed orientation)
500K Cycles (random orientation)

Weight of module (without lens) 5.8 grams

Compliance CE / RoHS

∗ Fixed orientation will allow for heavier lens operation. Consult Balluff if your lens does not fit or cannot be focused.
∗∗ Power depends on input voltage, speed & load. ∗∗∗ Consult Balluff if you have lower temperature requirements.

Generated by Doxygen

19.6 Working with I2C devices 167

Note

By default, the motorized lens mount is shipped in "closed loop mode". This means that the
motor will move to and keep its absolute position in a permanent loop. Therefore you will hear a high
frequent sound if you touch the lens or if you adjust the focus manually while the module is operating.
For this reason, we recommend to use the "open loop mode" while adjusting the lens.
In fixed focus applications you might also consider switching to open loop mode. This will also extend
the life time of the motor and reduce operation noise. Please note that the lens will remain at its position
also in open loop mode due to mechanical friction.
The open loop mode can be set via MotorFocusSendBuffer (value: "<20 0>") and then call
MotorFocusSend either in ImpactControlCenter or by programming.

19.6.2.2 Controlling motorized lens mount with ImpactControlCenter Figure 1 shows a live snap of a scene
with different focus planes.

Figure 1: ImpactControlCenter - Preview with blurred background and focused label

To control the motorized lens mount via ImpactControlCenter you have to change the "UserExperience" either to
"Expert" or "Guru". Afterwards, there is a special section in "Digital I/O" called "MotorFocus←↩

Control" in the "Device Properties" tab:

Generated by Doxygen

168

Figure 2: ImpactControlCenter - MotorFocusControl in section Digital I/O

This is a wrapper of the MotorFocusControl class which makes the following methods and properties available in
the GUI:

• Properties:

– MotorFocusAbsolutePositionCurrent: An integer property (read-only) storing the current
absolute position (in encoder counts).

Generated by Doxygen

19.6 Working with I2C devices 169

– MotorFocusAbsolutePositionDesired: An integer property storing an absolute position (in
encoder counts) that will be used by subsequent calls to the MotorFocusMoveToAbsolutePosition←↩

Desired command.

– MotorFocusIncrement: An integer property storing an increment (in encoder counts) that will be
used by subsequent calls to MotorFocusNear and MotorFocusFar commands.

– MotorFocusReceiveBuffer: A string property (read-only) that will contain answers sent by the
motor focus controller.

– MotorFocusSendBuffer: A string property storing a command to be sent to the motor focus.

• Methods:

– MotorFocusFar: Calling this function will cause the motor focus to move backward by Motor←↩

FocusIncrement encoder units.

– MotorFocusMoveToAbsolutePositionDesired: Calling this function will cause the motor
focus to move to the position defined by the value of MotorFocusAbsolutePositionDesired.

– MotorFocusNear: Calling this function will cause the motor focus to move forward by Motor←↩

FocusIncrement encoder units.

– MotorFocusSend: Calling this function will send the value of MotorFocusSendBuffer to the hard-
ware.

By clicking on the icon with the three dots (e.g. "MotorFocusNear()" in Figure 2), this method will be called
using the set properties (e.g. "100" as "MotorFocusIncrement" value as shown in Figure 2).

The following explains the typical adjustment procedure:

1. Move the lens mount to the farthest position by applying MotorFocusFar command as often as needed.

2. Switch off closed loop mode by using the command described above.

3. Screw in lens and focus at infinity.

4. Move to the nearest position and check MOD.

5. Move to your working distance.

If your application does not require focusing at infinity you might set the lens mount to the middle position (1500
steps) and focus the lens for your working distance. This gives you equal focusing headroom in both directions. In
this case please check that for MotorFocusNear the lens does not block the movement until Zero is reached.

19.6.2.3 Programming the motorized lens mount If you want to program own application using the motorized
lens mount, the Impact Acquire API offers the class MotorFocusControl which is described in MotorFocusControl
class reference in the manual for the corresponding programming language at the manuals section.

Note

The following code snippets are C# pseudo code.

To use the MotorFocusControl class, you have to create an instance of the class:

// Initializing the device
DeviceManager deviceManager = new DeviceManager();
Device device = deviceManager.getDeviceByFamily("mvBlueFOX");

MotorFocusControl motorFocusControl = new MotorFocusControl(ref device);

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

170

Note

You can check, if the camera has a motorized lens mount at all via "motorFocusControl.motor←↩

FocusIncrement.valid == false".

Afterwards, you can

• "write()" (integer) / "writeS()" (string) and

• "read()" (integer) / "readS()" (string) the properties or

• "call()" the methods like

// setting the increment value to 100
motorFocusControl.motorFocusIncrement.write(100);

or

// moving the motor focus backwards by motorFocusIncrement
int status = motorFocusControl.motorFocusFar.call();
//getting the current position of the motor
int position = motorFocusControl.motorFocusAbsolutePositionCurrent.read();

Note

The call functions can be back while the motor is still moving. For this reason, it is necessary to create a
method which will check if the motor still moves.

To get information from the motor you can use "motorFocusSend". The following example shows how you can get
status and position of the motor. Furthermore, it shows how you can check, if the motor is still running:

...
int motorRunning = 0x4;
motorFocusControl.motorFocusSendBuffer.writeS("<10>");
motorFocusControl.motorFocusSend.call();
String s = motorFocusControl.motorFocusReceiveBuffer.readS();
if(s.Length != 29) return false;
// string is in hex
int status = Convert.ToInt32(s.Substring(4, 6), 16);

String positionStr = s.Substring(11, 8);
// the position as integer
int pos = Convert.ToInt32(positionStr, 16);

return (status & motorRunning) == motorRunning;
...

Sending the command "<10>" will return the status and position with following format:

<10 SSSSSS PPPPPPPP EEEEEEEE>

• SSSSSS is the motor status (6-digit hex format, 24 bit unsigned integer),

• PPPPPPPP is the absolute position in encoder counts (8-digit hex format, 32-bit signed integer) and

• EEEEEEEE is the position error in encoder counts (8-digit hex format, 32-bit signed integer)

"Motor status values"

Generated by Doxygen

19.6 Working with I2C devices 171

Bit Description Values

0 Reserved N/A
1 Motor direction 0 = Reverse

1 = Forward
2 Running 1 = Motor is running

3 Motor interlock 1 = Motor is disconnected
4 Numbered burst mode 1 = Fixed number of bursts in progress

5 Timed run 1 = Timed free run in progress

6 Multiplexed axis 1 = Multiplexed axis (e.g., SQ-2306, 2206)

7 Controller status 1 = Under computer control (analog servo control, if supported, is
not available)

8 Reserved
9 Forward limit 1 = Forward travel limit reached
10 Reverse limit 1 = Reverse travel limit reached
11 Motor burst or amplitude mode 1 = Amplitude mode (always used in closed-loop mode).

1 = Burst mode (200 Hz)

12 - 15 Reserved N/A
16 Encoder count error 1 = An error was detected in the encoder quadrature signal. Cleared

by sending command <07>.

17 Zero reference enabled 1 = Encoder zero reference mark detection is enabled
18 Motor on target 1 = Encoder position error is zero

19 Motor moving toward target 1 = Motor is moving toward a target position; appears after com-
mand <08> or move step command <06>. Once the target is
reached, bit 19 is set to zero.

20 Maintenance mode enabled 1 = Controller will actively hold the last target position

Note

If bits 20 and 21 are set 1 and bit 18 is set to 0, the
controller is in the process of moving back toward the
last targeted position.

21 Closed loop enabled 1 = Motion commands use the encoder for feedback

22 Motor accelerating 1 = The motor is accelerating to the desired velocity (set at the start
of closed-loop motion)
0 = Required motor speed is reached, motor is decelerating, or mo-
tor is stopped

23 Stalled 1 = The position error exceeds the stall detection threshold

Following two examples will show, how the motor status value will look like (using the code snippet before):

19.6.2.3.1 Example 1: Motor doesn't move (return = false)

Status:
Hex: 340080
Dec: 3408000

Binary: 0011 0100 0000 0000 1000 0000
23-20 19-16 15-12 11-08 07-04 03-00 => bit 2 is 0

motorRunning would be 4 = 0000 0000 0000 0000 0000 0100
(status & motorRunning) = 0 => return false

Generated by Doxygen

172

19.6.2.3.2 Example 2: Motor does move (return = true)

Status:
Hex: 380086
Dec: 3670150

Binary: 0011 1000 0000 0000 1000 0110
23-20 19-16 15-12 11-08 07-04 03-00 => bit 2 is 1

(status & motorRunning) = 4 => return true

19.6.2.3.3 Example 3: Something a little more complex This shows a more complex piece of code of how the
motor focus can be used.
#ifdef _MSC_VER
include <windows.h>
#else
include <time.h>
#endif
#include <apps/Common/exampleHelper.h>
#include <iostream>
#include <iomanip>
#include <mvIMPACT_CPP/mvIMPACT_acquire.h>
#include <typeinfo>

using namespace std;

// This whole sample shows the low level access to the focus motor. For some
// of the functions presented here, there are also convenience functions in
// ’mvIMPACT::acquire::MotorFocusControl’

//---
static void millisleep(long millisec)
//---
{
#ifdef _MSC_VER

Sleep(millisec);
#else

timespec requested;
requested.tv_sec = millisec / 1000;
requested.tv_nsec = (millisec % 1000) * 1000000L;
nanosleep(&requested, NULL);

#endif
}

//---
class MotorControl
//---
{
private:

const MotorFocusControl mfc;
const string version;

// private, so as to hide the command strings from the outside world
TDMR_ERROR write(const string& command) const
{

mfc.motorFocusSendBuffer.writeS(command);
const TDMR_ERROR retval = static_cast<TDMR_ERROR>(mfc.motorFocusSend.call());

#if _DEBUG
if(retval != DMR_NO_ERROR)
{

cerr « "Call to command ’" « command « "’ failed with error ’" « DMR_ErrorCodeToString(retval)
« "’" « endl;

}
#endif

return retval;
}

void waitForCommandReceipt(const string& expectedReply) const
{

const size_t length = expectedReply.length();
string reply;
while(((reply = getReply()).length() < length) ||

(reply.length() == length && reply != expectedReply) ||
(reply.length() > length && reply.substr(0, length) != expectedReply))

{
cout « "Waiting for confirmation of command " « expectedReply.substr(1, length - 1) « " (" «

reply « ")" « endl;
}

}

TDMR_ERROR writeConfirmed(const string& command) const
{

Generated by Doxygen

19.6 Working with I2C devices 173

const TDMR_ERROR retval = write(command);
if(retval == DMR_NO_ERROR)
{

waitForCommandReceipt(command.substr(0, 3));
}
return retval;

}

string initializeAndGetVersion(void) const
{

write("<01>"); // must be the first command written
millisleep(1500); // initialization takes time
return getReply();

}

unsigned int replyToInt(const string& reply, int bitNr /* < 32, or it won’t fit in an unsigned int */)
const

{
unsigned int nrOfCharactersNeeded = (bitNr » 2) + 1; // four bits in one character
if(reply.length() < nrOfCharactersNeeded + 4) // first four characters contain no status bits
{

throw runtime_error("Reply string too short");
}
unsigned int uistatus;
istringstream iss(reply.substr(4, nrOfCharactersNeeded)); // skip the first four characters,

that contain no status bits
iss » hex » uistatus; // string returned is in hex
return uistatus;

}

bool bitIsSet(unsigned int uistatus, int bitNr) const
{

return (uistatus & (0x1 « bitNr)) != 0;
}
bool bitIsNotSet(unsigned int uistatus, int bitNr) const
{

return (uistatus & (0x1 « bitNr)) == 0;
}
bool bitIsSet(const string& reply, int bitNr) const
{

return bitIsSet(replyToInt(reply, bitNr), bitNr);
}
bool bitIsNotSet(const string& reply, int bitNr) const
{

return bitIsNotSet(replyToInt(reply, bitNr), bitNr);
}

public:
explicit MotorControl(Device* device) : mfc(MotorFocusControl(device)), version(

initializeAndGetVersion())
{

if(bitIsNotSet(getStatus(), 21))
{

writeConfirmed("<20 1>"); // only in closed-loop drive mode will command moveToPosition work
}

}

~MotorControl()
{

write("<03>"); // halt the motor (do not wait for confirmation, as the dtor will also be called
when the USB plug is pulled, and then one would obviously wait forever)

write("<02>"); // release computer control
}

string getVersion(void) const
{

return version.length() > 8 ? version.substr(6, version.length() - 7) : version;
}

string getReply(void) const
{

millisleep(40);
return mfc.motorFocusReceiveBuffer.read(); // mfc is private

}

string getStatus(void) const
{

write("<10>"); // request status
return getReply();

}

// only first 16 status bits of "<10>"
string getShortStatus(void) const
{

write("<19>"); // request motor status
return getReply();

Generated by Doxygen

174

}

bool isRunning(void) const
{

return bitIsSet(getShortStatus(), 2); // would also work with getStatus()
}

string getPositionStr(void) const
{

string status = getStatus();
if(status.empty())
{

throw runtime_error(string("Could not retrieve status"));
}
return status.substr(11, 8);

}

int getPosition(void) const
{

int ipos;
istringstream iss(getPositionStr());
iss » std::hex » ipos; // string returned is in hex
return ipos;

}

void moveToPosition(int pos) const
{

ostringstream oss;
oss « string("<08 ");
oss « std::hex « setw(8) « setfill(’0’) « pos;
oss « string(">") « ends;
writeConfirmed(oss.str());

}

void waitForEndOfMove(void) const
{

while(isRunning())
{

millisleep(40); // wait until the position has been reached
}

}

// required after plugging FOX out and back in again
void reestablishMotorControl(void) const
{

while(initializeAndGetVersion().empty()) {};
}

};

//---
bool isDeviceSupportedBySample(const Device* const pDev)
//---
{

if(pDev->family.read() != "mvBlueFOX")
{

return false;
}

return true;
}

//---
int main(void)
//---
{

DeviceManager devMgr;
Device* pDev = getDeviceFromUserInput(devMgr, isDeviceSupportedBySample);
if(!pDev)
{

cout « "Unable to continue! Press [ENTER] to end the application" « endl;
cin.get();
return -1;

}

try
{

pDev->open();
}
catch(const EDeviceManager& e)
{

cerr « "Could not open device " « pDev->serial.read() « " (" « e.what() « ", " «
e.getErrorCodeAsString() « ")" « endl;

return -1;
}

try
{

Generated by Doxygen

19.7 Working with LUTs 175

MotorControl mc(pDev);
cout « "Found " « mc.getVersion() « endl;
try
{

int i = 4;
while(i--)
{

mc.moveToPosition(1500);
mc.waitForEndOfMove();
cout « mc.getPosition() « endl;

mc.moveToPosition(2500);
mc.waitForEndOfMove();
cout « mc.getPosition() « endl;

}
}
catch(const exception& e)
{

cerr « "Exception of " « typeid(e).name() « " ’" « e.what() « "’" « std::endl;
return -1;

}
}
catch(const exception& e)
{

cerr « "No M3-F found on this device (" « e.what() « ")" « endl;
return -1;

}
pDev->close();

return 0;
}

19.7 Working with LUTs

There are several use cases concerning LUTs (Look-Up-Tables):

• Introducing LUTs

19.7.1 Introducing LUTs

19.7.1.1 Introduction
Look-Up-Tables (LUT) are used to transform input data into a desirable output format. For example, if you want to
invert an 8 bit image, a Look-Up-Table will look like the following:

Figure 1: Look-Up-Table which inverts a pixel of an 8 bit mono image

I.e., a pixel which is white in the input image (value 255) will become black (value 0) in the output image.

All Balluff/MATRIX VISION devices use a hardware based LUT which means that

• no host CPU load is needed and

• the LUT operations are independent of the transmission bit depth.

Generated by Doxygen

176

19.7.1.2 Setting the hardware based LUTs via LUT Control

Note

The mvBlueFOX cameras also feature a hardware based LUT. Although, you have to set the LUT via
Setting -> Base -> ImageProcessing -> LUTOperations, you can set where the processing takes place.
For this reason, there is the parameter LUTImplementation. Just select either "Software" or "Hardware".

19.7.1.3 Setting the Host based LUTs via LUTOperations
Host based LUTs are also available via "Setting -> Base -> ImageProcessing -> LUTOperations"). Here, the
changes will affect the 8 bit image data and the processing needs the CPU of the host system.

The mvBlueFOX cameras also feature a hardware based LUT. Although, you have to set the LUT via "Setting ->
Base -> ImageProcessing -> LUTOperations", you can set where the processing takes place. For this reason,
there is the parameter LUTImplementation. Just select either "Software" or "Hardware".

Three "LUTMode"s are available:

• "Gamma"
You can use "Gamma" to lift darker image areas and to flatten the brighter ones. This compensates the
contrast of the object. The calculation is described here. It makes sense to set the "←↩

GammaStartThreshold" higher than 0 to avoid a too extreme lift or noise in the darker areas.

• "Interpolated"
With "Interpolated" you can set the key points of a characteristic line. You can defined the number of key
points. The following figure shows the behavior of all 3 LUTInterpolationModes with 3 key points:

Figure 2: LUTMode "Interpolated" -> LUTInterpolationMode

• "Direct"
With "Direct" you can set the LUT values directly.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1LUTParameters.html

19.8 Working with triggers 177

19.7.1.3.1 Example 1: Inverting an Image
To get an inverted 8 bit mono image like shown in Figure 1, you can set the LUT using ImpactControlCenter. After
starting ImpactControlCenter and using the device,

1. Set "LUTEnable" to "On" in "Setting -> Base -> ImageProcessing -> LUTOperations".

2. Afterwards, set "LUTMode" to "Direct".

3. Right-click on "LUTs -> LUT-0 -> DirectValues[256]" and select "Set Multiple Elements... -> Via A User
Defined Value Range".
This is one way to get an inverted result. It is also possible to use the "LUTMode" - "Interpolated".

4. Now you can set the range from 0 to 255 and the values from 255 to 0 as shown in Figure 2.

Figure 3: Inverting an image using ImpactControlCenter with LUTMode "Direct"

19.8 Working with triggers

There are several use cases concerning trigger:

• Using external trigger with CMOS sensors

Generated by Doxygen

178

19.8.1 Using external trigger with CMOS sensors

19.8.1.1 Scenario The CMOS sensors used in mvBlueFOX cameras support the following trigger modes:

• Continuous

• OnDemand (software trigger)

• OnLowLevel

• OnHighLevel

• OnHighExpose (only with mvBlueFOX-[Model]205 (5.0 Mpix [2592 x 1944]))

If an external trigger signal occurs (e.g. high), the sensor will start to expose and readout one image. Now, if the
trigger signal is still high, the sensor will start to expose and readout the next image (see Figure 1, upper part). This
will lead to an acquisition just like using continuous trigger.

Figure 1: External Trigger with CMOS sensors

• ttrig = Time from trigger (internal or external) to integration start.

If you want to avoid this effect, you have to adjust the trigger signal. As you can see in Figure 1 (lower part), the
possible period has to be smaller than the time an image will need (texpose + treadout).

19.8.1.2 Example

Generated by Doxygen

19.9 Working with 3rd party tools 179

19.8.1.2.1 External synchronized image acquisition (high active)

Note

Using BVS CA-MLC or BVS CA-IGC, you have to select DigIn0 as the trigger source, because the
camera has only one opto-coupled input. Only the TTL model of the BVS CA-MLC has two I/O's.

• Trigger modes

– OnHighLevel:
The high level of the trigger has to be shorter than the frame time. In this case, the sensor will make
one image exactly. If the high time is longer, there will be images with the possible frequency of the
sensor as long as the high level takes. The first image will start with the low-high edge of the signal.
The integration time of the exposure register will be used.

– OnLowLevel:
The first image will start with the high-low edge of the signal.

– OnHighExpose
This mode is like OnHighLevel, however, the exposure time is used like the high time of the signal.

See also

Block diagrams with example circuits of the opto-isolated digital inputs and outputs can be found in
Dimensions and connectors.

19.9 Working with 3rd party tools

• Using VLC Media Player

• Using USB2 Cameras In A Docker Container

19.9.1 Using VLC Media Player

With the DirectShow Interface Impact Acquire compliant devices become video capture devices for the VLC Media
Player.

Generated by Doxygen

180

Figure 1: VLC Media Player with a connected device via DirectShow

19.9.1.1 System Requirements
It is necessary that the following drivers and programs are installed on the host device (laptop or PC):

• Windows 7 or higher, 32-bit or 64-bit

• up-do-date VLC Media Player, 32-bit or 64-bit (here: version 2.0.6)

• up-do-date Impact Acquire driver, 32-bit or 64-bit (here: version 2.5.6)

Note

Using Windows 10 or Windows 7: VLC Media Player with versions 2.2.0 have been tested successfully
with older versions of Impact Acquire. Since version 3.0.0 of VLC Impact Acquire will be needed to work
with devices through the DirectShow interface!

19.9.1.2 Installing VLC Media Player

1. Download a suitable version of the VLC Media Player from the VLC Media Player website mentioned below.

2. Run the setup.

3. Follow the installation process and use the default settings.

A restart of the system is not required.

See also

http://www.videolan.org/

Generated by Doxygen

http://www.videolan.org/

19.9 Working with 3rd party tools 181

19.9.1.3 Setting Up A Device For DirectShow For using devices, DirectShow needs a public driver that must
be registered with the operating system. As described in Registering Devices , this can be done with the help of
DeviceConfigure .

Note

If running a 64-bit DirectShow application, make sure to use a 64-bit version of DirectShow_Acquire,
which can only be installed with a 64-bit version of DeviceConfigure . (And respectively for a 32-bit
version)

1. Connect the device to the host.

2. Power the camera using a power supply at the power connector.

3. Wait until the status LED turns blue.

4. Open the tool DeviceConfigure ,

5. set a friendly name ,

6. and register the device for DirectShow .

Note

In some cases it could be necessary to repeat step 5.

19.9.1.4 Working With VLC Media Player

1. Start VLC Media Player.

2. Click on "Media -> Open Capture Device..." .

Figure 2: Open Capture Device...

3. Select the tab "Device Selection" .

4. In the section "Video device name" , select the friendly name of the device:

Generated by Doxygen

182

Figure 3: Video device name

5. Finally, click on "Play" .
After a short delay you will see the live image of the camera.

19.9.1.5 Changing Camera Properties When selecting a DirectShow_Acquire camera as a DirectShow cap-
ture device (in the "Open Capture Device" dialog), there are two posibilities to display the camera property dialog:

A. Click the checkbox "Show more options" and append " :dshow-config" to the options in the bottom edit box:

Generated by Doxygen

19.9 Working with 3rd party tools 183

Figure 1: Entering additional options for displaying the DirectShow_Acquire property dialog

B. Alternatively, press the button "Advanced options" and, in the window that is going to be displayed, click the
checkbox "Device properties" followed by pressing "OK". This fills in all the relevant settings of the dialog into the
edit box in the "Open Media : Capture Device" dialog from solution A above.

Figure 2: Advanced options dialog invokrd by the Media/Open Capture dialog

Generated by Doxygen

184

After selecting the activity to invoke (Play/Stream/Enqueue/Convert), the DirectShow_Acquire property dialog will
open.

Figure 3: The property dialog for the DirectShow_Acquire capture device

Note

Most properties in this dialog control the camera directly, so they stay the same as long as the camera is
not reset. Properties that control streaming (like the ImageDestination::PixelFormat) are set by the VLC
Media Player each time the capture device is started.

After pressing "OK", the selected activity will start.

See also

If there are wrong colors in the resulting images, refer to Wrong Colors in the VLC Media Player .

Possibly there will be an error box like the one shown below, but you can safely ignore it by pressing "No" or "Cancel".

Generated by Doxygen

19.9 Working with 3rd party tools 185

Figure 4: Error message during startup of capture property dialog

19.9.2 Using USB2 Cameras In A Docker Container

When developing machine vision applications using Docker containers, it might be required to access the cameras
inside the container. With the Impact Acquire driver stack this can be achieved fairly easily and this chapter will
demonstrate how to build a basic Docker container where the cameras can be used.

19.9.2.1 Host Preparation

19.9.2.1.1 Linux

19.9.2.1.2 Windows

19.9.2.1.3 Host system requirements

• Windows 11 64-bit: Home or Pro version 21H2 or higher, or Enterprise or Education version 21H2 or higher
(Build 22000 or later)

• Windows 10 64-bit: Home or Pro 21H1 (build 19043) or higher, or Enterprise or Education 20H2 (build 19042)
or higher

• WSL2 backend (For installation please follow: Docker Window Install)

• Impact Acquire driver package >= 2.48.0 recommended

Generated by Doxygen

https://docs.docker.com/desktop/install/windows-install/

186

19.9.2.1.4 Attach the camera to the WSL2 Linux distro via USB/IP USB devices physically connected to
the host system are not automatically accessible in the WSL2 Linux distro. They need to be first attached from
the Windows host to the default Linux distro via USB/IP. Please follow Connect USB devices WSL2 for
implementation guidance.

19.9.2.1.5 Start udev manually udev is needed to identify attached USB devices and to access USB3 Vision™
devices as non-root users with the help of the udev-rules shipped by the Impact Acquire driver package. However,
systemd, which starts udev automatically, is by default not supported in WSL2 distros. Besides, udev doesn't
support containers. Since WSL2 distros themselves are technically containers, they are not supported by udev. In
order for udev to work in WSL2 distros, the following lines need to be commented out in /etc/init.d/udev
before manually starting udev, as shown below:

#if [! -w /sys]; then
log_warning_msg "udev does not support containers, not started"
exit 0
#fi

Then start udev in the WSL2 default Linux distro:

$ sudo /etc/init.d/udev start

19.9.2.2 Building A Docker Image The following demo Dockerfile builds a basic Docker image based on a slim
version of Debian, where the Impact Acquire driver package for the cameras and its sample programs are installed.
This Dockerfile can be used in many ways:

• Use it directly to test your device in a Docker container.

• Use it as a base image for your device applications.

• Use it as an inspiration for building your own Dockerfile.

Before building the Dockerfile, please download the required Impact Acquire driver installation files from Balluff
website (https://www.balluff.com/en-de/downloads/software) (user login is required):

• The installation script: install_mvBlueFOX.sh

• The installation package: mvBlueFOX-x86_64_ABI2-∗.tgz (∗ should be replaced by the version number)

Create a directory called Impact Acquire (as used in this demo Dockerfile) and move both installation files into this
directory. In this example, both files are downloaded into the Downloads directory and the Impact Acquire directory
is created inside the Downloads:

• $ cd ∼/Downloads

• $ mkdir Impact_Acquire

• $ mv install_mvBlueFOX.sh mvBlueFOX-x86_64_ABI2-∗.tgz Impact_Acquire/

Make the installation script install_mvBlueFOX.sh executable:

• $ cd Impact_Acquire

• $ chmod a+x install_mvBlueFOX.sh

Generated by Doxygen

https://learn.microsoft.com/en-us/windows/wsl/connect-usb
https://www.balluff.com/en-de/downloads/software

19.9 Working with 3rd party tools 187

Navigate back into the directory where product_name resides (e.g. Downloads) and create your Dockerfile:

• $ cd ∼/Downloads

• $ touch Dockerfile

Create the content of your Dockerfile. Our demo Dockerfile looks as follows:

start with slim version of actual Debian
FROM debian:9-slim

ENV LC_ALL C
ENV DEBIAN_FRONTEND noninteractive

entrypoint of Docker
CMD ["/bin/bash"]

set environment variables
ENV TERM linux
ENV MVIMPACT_ACQUIRE_DIR /opt/Impact_Acquire
ENV MVIMPACT_ACQUIRE_DATA_DIR /opt/Impact_Acquire/data
ENV container docker

update packets and install minimal requirements
after installation it will clean apt packet cache
RUN apt-get update && apt-get -y install build-essential && \

apt-get clean && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

move the directory Impact_Acquire with *.tgz and *.sh files to the container
COPY Impact_Acquire /var/lib/Impact_Acquire

execute the setup script in an unattended mode
RUN cd /var/lib/Impact_Acquire && \

./install_mvBlueFOX.sh -u && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

At last, build a Docker image using this Dockerfile:

$ sudo docker build -t [image_name] .

Note

Please make sure to call docker build from within the directory where the Dockerfile resides. An Internet
access is required for the docker build.

If built successfully, the newly built [image_name] will be listed when calling:

$ sudo docker images

19.9.2.3 Starting The Docker Container Since the Docker container is isolated from the host system, it needs
to be started with volume mount of /dev and certain cgroup permissions for it to access the cameras. In order to
avoid running the container in privileged mode, which is not secure, it can be started like this:

$ sudo docker run -ti -v /dev:/dev --device-cgroup-rule ’a 189:* rwm’ [image_name] /bin/bash

Where:

• -v /dev:/dev: use volume mount to map the host /dev directory to the container, so the container will be able
to always detect devices also when they get unplugged and re-plugged at any time.

• –device-cgroup-rule 'a 189:∗ rwm': with the --device-cgroup-rule flag, specific permission rules can be
added to a device list that is allowed by the container's cgroup. Here in this example, 189 is the major number
of the USB bus, ∗ means all minor numbers, and rwm are respectively read, write, mknod accesses. By doing
so, all USB devices will get read, write, mknod access. The camera can thus be enumerated successfully.

Generated by Doxygen

188

19.9.2.4 Validation After starting the container, the correct operation of cameras can be validated by running
one of the sample programs provided by the Impact Acquire (e.g. SingleCapture):

• $ cd /opt/Impact_Acquire/apps/SingleCapture/x86_64

• $./SingleCapture If the attached camera appears in the device list of the program's output, access to
it in the container by using the Impact Acquire has been established. Now the camera can be used inside the
Docker container for your machine vision applications.

19.10 Working with the Hardware Real-Time Controller (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

There are several use cases concerning the Hardware Real-Time Controller (HRTC):

• "Using single camera":

– Achieve a defined image frequency (HRTC)

– Delay the external trigger signal (HRTC)

– Creating double acquisitions (HRTC)

– Take two images after one external trigger (HRTC)

– Take two images with different expose times after an external trigger (HRTC)

– Edge controlled triggering (HRTC)

• "Using multiple cameras":

– Delay the expose start of the following camera (HRTC)

19.10.1 Achieve a defined image frequency (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

With the use of the HRTC, any feasible frequency with the accuracy of micro seconds(us) is possible. The program
to achieve this roughly must look like this (with the trigger mode set to ctmOnRisingEdge):

0. WaitClocks(<frame time in us> - <trigger pulse width in us>))
1. TriggerSet 1
2. WaitClocks(<trigger pulse width in us>)
3. TriggerReset
4. Jump 0

So to get e.g. exactly 10 images per second from the camera the program would somehow look like this(of course
the expose time then must be smaller or equal then the frame time in normal shutter mode):

0. WaitClocks 99000
1. TriggerSet 1
2. WaitClocks 1000
3. TriggerReset
4. Jump 0

Generated by Doxygen

19.10 Working with the Hardware Real-Time Controller (HRTC) 189

Figure 1: ImpactControlCenter - Entering the sample "Achieve a defined image frequency"

Note

Please note the max. frame rate of the corresponding sensor!

To see a code sample (in C++) how this can be implemented in an application see the description of the class
mvIMPACT::acquire::RTCtrProgram (C++ developers)

19.10.2 Delay the external trigger signal (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

0. WaitDigin DigIn0->On
1. WaitClocks <delay time>
2. TriggerSet 0
3. WaitClocks <trigger pulse width>
4. TriggerReset
5. Jump 0

<trigger pulse width> should not less than 100us.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1RTCtrProgram.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1RTCtrProgram.html

190

Figure 1: Delay the external trigger signal

As soon as digital input 0 changes from high to low (0), the HRTC waits the < delay time > (1) and starts the image
expose. The expose time is used from the expose setting of the camera. Step (5) jumps back to the beginning to
be able to wait for the next incoming signal.

Note

WaitDigIn waits for a state.

Between TriggerSet and TriggerReset has to be a waiting period.

If you are waiting for an external edge in a HRTC sequence like

WaitDigIn[On,Ignore]
WaitDigIn[Off,Ignore]

the minimum pulse width which can be detected by HRTC has to be at least 5 us.

19.10.3 Creating double acquisitions (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

If you need a double acquisition, i.e. take two images in a very short time interval, you can achieve this by using the
HRTC.

With the following HRTC code, you will

• take an image using TriggerSet and after TriggerReset you have to

• set the camera to ExposeSet immediately.

• Now, you have to wait until the first image was read-out and then

• set the second TriggerSet.

Generated by Doxygen

19.10 Working with the Hardware Real-Time Controller (HRTC) 191

The ExposureTime was set to 200 us.

0 WaitDigin DigitalInputs[0] - On
1 TriggerSet 1
2 WaitClocks 200
3 TriggerReset
4 WaitClocks 5
5 ExposeSet
6 WaitClocks 60000
7 TriggerSet 2
8 WaitClocks 100
9 TriggerReset
10 ExposeReset
11 WaitClocks 60000
12 Jump 0

19.10.4 Take two images after one external trigger (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

0. WaitDigin DigIn0->Off
1. TriggerSet 1
2. WaitClocks <trigger pulse width>
3. TriggerReset
4. WaitClocks <time between 2 acquisitions - 10us> (= WC1)
5. TriggerSet 2
6. WaitClocks <trigger pulse width>
7. TriggerReset
8. Jump 0

<trigger pulse width> should not less than 100us.

Figure 1: Take two images after one external trigger

This program generates two internal trigger signals after the digital input 0 is going to low. The time between those
internal trigger signals is defined by step (4). Each image is getting a different frame ID. The first one has the
number 1, defined in the command (1) and the second image will have the number 2. The application can ask for
the frame ID of each image, so well known which image is the first and the second one.

19.10.5 Take two images with different expose times after an external trigger (HRTC)

Generated by Doxygen

192

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

The following code shows the solution in combination with a CCD model of the camera. With CCD models you have
to set the exposure time using the trigger width.

0. WaitDigin DigIn0->Off
1. ExposeSet
2. WaitClocks <expose time image1 - 10us> (= WC1)
3. TriggerSet 1
4. WaitClocks <trigger pulse width>
5. TriggerReset
6. ExposeReset
7. WaitClocks <time between 2 acquisitions - expose time image1 - 10us> (= WC2)
8. ExposeSet
9. WaitClocks <expose time image2 - 10us> (= WC3)
10. TriggerSet 2
11. WaitClocks <trigger pulse width>
12. TriggerReset
13. ExposeReset
14. Jump 0

<trigger pulse width> should not less than 100us.

Figure 1: Take two images with different expose times after an external trigger

Note

Due to the internal loop to wait for a trigger signal, the WaitClocks call between "TriggerSet 1" and "←↩

TriggerReset" constitute 100 . For this reason, the trigger signal cannot be missed.

Before the ExposeReset, you have to call the TriggerReset otherwise the normal flow will continue and
the image data will be lost!

The sensor expose time after the TriggerSet is 0 .

Using a CMOS model (e.g. the mvBlueFOX-MLC205), a sample with four consecutive exposure times (10ms / 20ms
/ 40ms / 80ms) triggered just by one hardware input signal would look like this:

Generated by Doxygen

19.10 Working with the Hardware Real-Time Controller (HRTC) 193

0. WaitDigin DigIn0->On
1. TriggerSet
2. WaitClocks 10000 (= 10 ms)
3. TriggerReset
4. WaitClocks 1000000 (= 1 s)
5. TriggerSet
6. WaitClocks 20000 (= 20 ms)
7. TriggerReset
8. WaitClocks 1000000 (= 1 s)
9. TriggerSet
10. WaitClocks 40000 (= 40 ms)
11. TriggerReset
12. WaitClocks 1000000 (= 1 s)
13. TriggerSet
14. WaitClocks 80000 (= 40 ms)
15. TriggerReset
16. WaitClocks 1000000 (= 1 s)
17. Jump 0

See also

This second sample is also available as an rtp file: MLC205_four_images_diff_exp.rtp.

19.10.6 Edge controlled triggering (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

To achieve an edged controlled triggering, you can use HRTC. Please follow these steps:

1. First of all, you have to set the TriggerMode to OnHighLevel .

2. Then, set the TriggerSource to RTCtrl .

Figure 1: ImpactControlCenter - TriggerMode and TriggerSource

Afterwards you have to configure the HRTC program:

Generated by Doxygen

@company_url_download_archive@/hrtc/MLC205_four_images_diff_exp.rtp

194

1. The HRTC program waits for a rising edge at the digital input 0 (step 1).

2. If there is a rising edge, the trigger will be set (step 2).

3. After a short wait time (step 3),

4. the trigger will be reset (step 4).

5. Now, the HRTC program waits for a falling edge at the digital input 0 (step 5).

6. If there is a falling edge, the trigger will jump to step 0 (step 6).

Note

The waiting time at step 0 is necessary to debounce the signal level at the input (the duration should be
shorter than the frame time).

Figure 2: ImpactControlCenter - Edge controller triggering using HRTC

How you can work with capture settings in ImpactControlCenter is described in "Setting Up Multiple Display
Support, Working With Several Capture Settings In Parallel" in the "Impact Acquire SDK GUI Applications"
manual.

To see a code sample (in C++) how this can be implemented in an application see the description of the class
mvIMPACT::acquire::RTCtrProgram (C++ developers)

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1RTCtrProgram.html
https://www.balluff.com/en-de/documentation-for-your-balluff-product/SDK_CPP/classmvIMPACT_1_1acquire_1_1RTCtrProgram.html

19.10 Working with the Hardware Real-Time Controller (HRTC) 195

19.10.7 Delay the expose start of the following camera (HRTC)

Note

Please have a look at the Hardware Real-Time Controller (HRTC) chapter for basic information.

The use case Synchronize the cameras to expose at the same time shows how you have to connect the
cameras.

If a defined delay should be necessary between the cameras, the HRTC can do the synchronization work.

In this case, one camera must be the master. The external trigger signal that will start the acquisition must be
connected to one of the cameras digital inputs. One of the digital outputs then will be connected to the digital input
of the next camera. So camera one uses its digital output to trigger camera two. How to connect the cameras to
one another can also be seen in the following image:

Figure 1: Connection diagram for a defined delay from the exposure start of one camera relative to another

Assuming that the external trigger is connected to digital input 0 of camera one and digital output 0 is connected
to digital input 0 of camera two. Each additional camera will then be connected to it predecessor like camera 2 is
connected to camera 1. The HRTC of camera one then has to be programmed somehow like this:

0. WaitDigin DigIn0->On
1. TriggerSet 0
2. WaitClocks <trigger pulse width>
3. TriggerReset
4. WaitClocks <delay time>
5. SetDigout DigOut0->On
6. WaitClocks 100us
7. SetDigout DigOut0->Off
8. Jump 0

<trigger pulse width> should not less than 100us.

When the cameras are set up to start the exposure on the rising edge of the signal <delay time> of course is the
desired delay time minus <trigger pulse width>.

If more than two cameras shall be connected like this, every camera except the last one must run a program like
the one discussed above. The delay times of course can vary.

Generated by Doxygen

196

Figure 2: Delay the expose start of the following camera

20 Appendix A. Specific Camera / Sensor Data

• A.1 CCD

• A.2 CMOS

20.1 A.1 CCD

• mvBlueFOX-[Model]220 (0.3 Mpix [640 x 480])

• mvBlueFOX-[Model]220a (0.3 Mpix [640 x 480])

• mvBlueFOX-[Model]221 (0.8 Mpix [1024 x 768])

• mvBlueFOX-[Model]223 (1.4 Mpix [1360 x 1024])

• mvBlueFOX-[Model]224 (1.9 Mpix [1600 x 1200])

20.1.1 mvBlueFOX-[Model]220 (0.3 Mpix [640 x 480])

20.1.1.1 Introduction
The CCD sensor is a highly programmable imaging module which will, for example, enable the following type of
applications

Industrial applications:

• triggered image acquisition with precise control of image exposure start by hardware trigger input.

• image acquisition of fast moving objects due to:

Generated by Doxygen

20.1 A.1 CCD 197

– frame exposure, integrating all pixels at a time in contrast to CMOS imager which typically integrate
line-by-line.

– short shutter time, to get sharp images.

– flash control output to have enough light for short time.

Scientific applications:

• long time exposure for low light conditions.

• optimizing image quality using the variable shutter control.

20.1.1.2 Details of operation
The process of getting an image from the CCD sensor can be separated into three different phases.

20.1.1.2.1 Trigger
When coming out of reset or ready with the last readout the CCD controller is waiting for a Trigger signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel Start an exposure of a frame as long as the trigger input is below the trigger threshold.

OnHighLevel Start an exposure of a frame as long as the trigger input is above the trigger threshold.

OnFallingEdge Each falling edge of trigger signal acquires one image.

OnRisingEdge Each rising edge of trigger signal acquires one image.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

See also

For detailed description about the trigger modes (https://www.balluff.com/en-de/documentation-for-your-balluff-product
[Impact Acquire API])

• C: TCameraTriggerMode

• C++: mvIMPACT::acquire::TCameraTriggerMode

20.1.1.2.2 Exposure aka Integration
After an active trigger, the exposure phase starts with a maximum jitter of ttrig. If flash illumination is enabled
in software the flash output will be activated exactly while the sensor chip is integrating light. Exposure time is
adjustable by software in increments of treadline.

20.1.1.2.3 Readout
When exposure is finished, the image is transferred to hidden storage cells on the CCD. Image data is then shifted
out line-by-line and transferred to memory. Shifting out non active lines takes tvshift, while shifting out active lines
will consume treadline. The number of active pixels per line will not have any impact on readout speed.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

198

20.1.1.3 CCD Timing

Name Description Pixel clock

12 MHz 24 MHz
ttrig Time from trigger

(internal or external) to exposure start
10us

ttrans Image transfer time
(move image to readout cells in CCD)

64us 32us

treadline time needed to readout a line 64us 32us
tvshift time needed to shift unused lines away 3.15us 1.6us

twait minimal time to next trigger 64us 32us

texposure Exposure time 2uss - 128s

treadout Image readout time
(move image from readout cells to memory

treadout = (ActiveLines ∗ treadline) + (510 - ActiveLines) ∗ tvshift

20.1.1.3.1 Timings

Note

In partial scan mode (readout window ysize < 480 lines).

To calculate the maximum frames per second (FPSmax) you will need following formula (ExposeMode: Standard):

FPS_max = 1

t_trig + t_readout + t_exposure + t_trans + t_wait

(ExposeMode: Overlapped):

t_trig + t_readout + t_trans + t_wait < t_exposure: FPS_max = 1

t_integ

t_trig + t_readout + t_trans + t_wait > t_exposure: FPS_max = 1

t_trig + t_readout + t_trans + t_wait

Example: Frame rate as function of lines & exposure time

Now, when we insert the values using exposure time of, for example, 65 us, 100 lines and 12MHz pixel clock
(ExposeMode: Standard):

Generated by Doxygen

20.1 A.1 CCD 199

FPS_max = 1

10 us + ((100 * 64 us) + ((510 - 100) * 4.85 us) + 3.15 us) + 65 us + 64 us + 64 us

= 0.0001266704667806700868 1 / us
= 126.7

Note

The calculator returns the max. frame rate supported by the sensor. Please keep in mind that it will
depend on the interface and the used image format if this frame rate can be transferred.

See also

To find out how to achieve any defined freq. below or equal to the achievable max. freq., please have a look
at Achieve a defined image frequency (HRTC).

20.1.1.4 Reprogramming CCD Timing
Reprogramming the CCD Controller will happen when the following changes occur

• Changing the exposure time

• Changing the capture window

• Changing Trigger Modes

Reprogram time consists of two phases

1. Time needed to send data to the CCD controller depending on what is changed

exposure : abt 2..3ms
window: abt 4..6ms
trigger mode: from 5..90ms,
varies with oldmode/newmode combination

2. Time to initialize (erase) the CCD chip after reprogramming this is fixed, abt 4.5 ms

So for example when reprogramming the capture window you will need (average values)

tregprog = change_window + init_ccd

tregprog = 5ms + 4.5ms

tregprog = 9.5ms

20.1.1.5 CCD Sensor Data
Device Structure

• Interline CCD image sensor

• Image size: Diagonal 4.5mm (Type 1/4)

• Number of effective pixels: 659 (H) x 494 (V) approx. 330K pixels

• Total number of pixels: 692 (H) x 504 (V) approx. 350K pixels

• Chip size: 4.60mm (H) x 3.97mm (V)

• Unit cell size: 5.6um (H) x 5.6um (V)

• Optical black:

– Horizontal (H) direction: Front 2 pixels, rear 31 pixels

– Vertical (V) direction: Front 8 pixels, rear 2 pixels

• Number of dummy bits: Horizontal 16 Vertical 5

• Substrate material: Silicon

Generated by Doxygen

200

20.1.1.5.1 Characteristics
These zone definitions apply to both the color and gray scale version of the sensor.

20.1.1.5.2 Color version

20.1.1.5.3 Gray scale version

Generated by Doxygen

20.1 A.1 CCD 201

20.1.1.6 CCD Signal Processing
The CCD signal is processed with an analog front-end and digitized by an 12 bit analog-to-digital converter
(ADC). The analog front-end contains a programmable gain amplifier which is variable from 0db (gain=0) to 30dB
(gain=255).

The 8 most significant bits of the ADC are captured to the frame buffer. This will give the following transfer function
(based on the 8 bit digital code): Digital_code [lsb] = ccd_signal[V] ∗ 256[lsb/V] ∗ exp(gain[bB]/20) lsb : least
significant bit (smallest digital code change)

Device Feature And Property List

20.1.1.7 Device Feature And Property List

• mvBlueFOX-220G Features

• mvBlueFOX-220C Features

20.1.1.7.1 mvBlueFOX-220G Features

20.1.1.7.2 mvBlueFOX-220C Features

20.1.2 mvBlueFOX-[Model]220a (0.3 Mpix [640 x 480])

20.1.2.1 Introduction
The CCD sensor is a highly programmable imaging module which will, for example, enable the following type of
applications

Industrial applications:

• triggered image acquisition with precise control of image integration start by hardware trigger input.

• image acquisition of fast moving objects due to:

– frame integration, integrating all pixels at a time in contrast to CMOS imager which typically integrate
line-by-line.

– short shutter time, to get sharp images.

– flash control output to have enough light for short time.

Scientific applications:

• long time integration for low light conditions.

• optimizing image quality using the variable shutter control.

20.1.2.2 Details of operation
The process of getting an image from the CCD sensor can be separated into three different phases.

20.1.2.2.1 Trigger
When coming out of reset or ready with the last readout the CCD controller is waiting for a Trigger signal.

The following trigger modes are available:

Generated by Doxygen

202

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

OnFallingEdge Each falling edge of trigger signal acquires one image.

OnRisingEdge Each rising edge of trigger signal acquires one image.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

TriggerSource Impact Acquire TriggerSource GenICam(BCX)

GP-IN0 Line4
GP-IN1 Line5

See also

For detailed description about the trigger modes (https://www.balluff.com/en-de/documentation-for-your-balluff-product
[Impact Acquire API])

• C: TCameraTriggerMode

• C++: mvIMPACT::acquire::TCameraTriggerMode

Note

Trigger modes which use an external input (ctmOnLowLevel, ctmOnHighLevel, ctmOnRisingEdge,
ctmOnFallingEdge) will use digital input 0 as input for the trigger signal. Input 0 is not restricted to
the trigger function. It can always also be used as general purpose digital input. The input switching
threshold of all inputs can be programmed with write_dac(level_in_mV). The best is to set this to the
half of the input voltage. So for example if you apply a 24V switching signal to the digital inputs set the
threshold to 12000 mV.

20.1.2.2.2 Exposure aka Integration
After an active trigger, the integration phase starts with a maximum jitter of ttrig. If flash illumination is enabled
in software the flash output will be activated exactly while the sensor chip is integrating light. Exposure time is
adjustable by software in increments of treadline.

20.1.2.2.3 Readout
When integration is finished, the image is transferred to hidden storage cells on the CCD. Image data is then shifted
out line-by-line and transferred to memory. Shifting out non active lines takes tvshift, while shifting out active lines
will consume treadline. The number of active pixels per line will not have any impact on readout speed.

20.1.2.3 CCD Timing

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

20.1 A.1 CCD 203

Name Description Pixel clock

20 MHz 40 MHz
ttrig Time from trigger

(internal or external) to exposure start
3.6us 1.8us

ttrans Image transfer time
(move image to readout cells in CCD)

42.6us 21.3us

treadline time needed to readout a line 39.05us 19.525us
tvshift time needed to shift unused lines away 3.6us 1.8us

twait minimal time to next trigger 7.2us 3.6us

texposure Exposure time 1us..10s 1us..10s

treadout Image readout time
(move image from readout cells to memory

treadout = (ActiveLines ∗ treadline) + (504 - ActiveLines) ∗ tvshift + treadline

20.1.2.3.1 Timings

Note

In partial scan mode (readout window ysize < 480 lines).

To calculate the maximum frames per second (FPSmax) you will need following formula (Expose mode: No overlap):

FPS_max = 1
--
t_trig + t_readout + t_exposure + t_trans + t_wait

(Expose mode: Overlapped):

t_trig + t_readout + t_trans + t_wait < t_exposure: FPS_max = 1

t_exposure

t_trig + t_readout + t_trans + t_wait > t_exposure: FPS_max = 1

t_trig + t_readout + t_trans + t_wait

20.1.2.3.2 Example: Frame rate as function of lines & exposure time
Now, when we insert the values using exposure time of, for example, 8000 us, 480 lines and 40MHz pixel clock
(Expose mode: No overlap):

FPS_max = 1

1.8 us + ((480 * 19.525 us) + ((504 - 480) * 1.80 us) + 19.525 us) + 8000 us + 21.3 us + 3.6 us

= 0.0000572690945899318068 1 / us
= 57.3

20.1.2.3.3 Frame rate calculator

Note

The calculator returns the max. frame rate supported by the sensor. Please keep in mind that it will
depend on the interface and the used image format if this frame rate can be transferred.

See also

To find out how to achieve any defined freq. below or equal to the achievable max. freq., please have a look
at Achieve a defined image frequency (HRTC).

Generated by Doxygen

204

20.1.2.4 Reprogramming CCD Timing
Reprogramming the CCD Controller will happen when the following changes occur

• Changing the exposure time

• Changing the capture window

• Changing Trigger Modes

Reprogram time consists of two phases

1. Time needed to send data to the CCD controller depending on what is changed

exposure : abt 2..3ms
window: abt 4..6ms
trigger mode: from 5..90ms,
varies with oldmode/newmode combination

2. Time to initialize (erase) the CCD chip after reprogramming this is fixed, abt 4.5 ms

So for example when reprogramming the capture window you will need (average values)

tregprog = change_window + init_ccd

tregprog = 5ms + 4.5ms

tregprog = 9.5ms

20.1.2.5 CCD Sensor Data
Device Structure

• Interline CCD image sensor

• Image size: Diagonal 6mm (Type 1/3)

• Number of effective pixels: 659 (H) x 494 (V) approx. 330K pixels

• Total number of pixels: 692 (H) x 504 (V) approx. 350K pixels

• Chip size: 5.79mm (H) x 4.89mm (V)

• Unit cell size: 7.4um (H) x 7.4um (V)

• Optical black:

– Horizontal (H) direction: Front 2 pixels, rear 31 pixels

– Vertical (V) direction: Front 8 pixels, rear 2 pixels

• Number of dummy bits: Horizontal 16 Vertical 5

• Substrate material: Silicon

Generated by Doxygen

20.1 A.1 CCD 205

20.1.2.5.1 Characteristics
These zone definitions apply to both the color and gray scale version of the sensor.

20.1.2.5.2 Color version

20.1.2.5.3 Gray scale version

Device Feature And Property List

Generated by Doxygen

206

20.1.2.6 Device Feature And Property List

• mvBlueFOX-220aG Features

• mvBlueFOX-220aC Features

20.1.2.6.1 mvBlueFOX-220aG Features

20.1.2.6.2 mvBlueFOX-220aC Features

20.1.3 mvBlueFOX-[Model]221 (0.8 Mpix [1024 x 768])

20.1.3.1 Introduction
The CCD sensor is a highly programmable imaging module which will, for example, enable the following type of
applications

Industrial applications:

• triggered image acquisition with precise control of image exposure start by hardware trigger input.

• image acquisition of fast moving objects due to:

– frame exposure, integrating all pixels at a time in contrast to CMOS imager which typically integrate
line-by-line.

– short shutter time, to get sharp images.

– flash control output to have enough light for short time.

Scientific applications:

• long time exposure for low light conditions.

• optimizing image quality using the variable shutter control.

20.1.3.2 Details of operation
The process of getting an image from the CCD sensor can be separated into three different phases.

20.1.3.2.1 Trigger
When coming out of reset or ready with the last readout the CCD controller is waiting for a Trigger signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

OnFallingEdge Each falling edge of trigger signal acquires one image.

OnRisingEdge Each rising edge of trigger signal acquires one image.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

OnLowExpose Each falling edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

OnAnyEdge Start the exposure of a frame when the trigger input level changes from high to low or from
low to high.

Generated by Doxygen

20.1 A.1 CCD 207

See also

For detailed description about the trigger modes (https://www.balluff.com/en-de/documentation-for-your-balluff-product
[Impact Acquire API])

• C: TCameraTriggerMode

• C++: mvIMPACT::acquire::TCameraTriggerMode

20.1.3.2.2 Exposure aka Integration
After an active trigger, the exposure phase starts with a maximum jitter of ttrig. If flash illumination is enabled
in software the flash output will be activated exactly while the sensor chip is integrating light. Integration time is
adjustable by software in increments of treadline.

20.1.3.2.3 Readout
When exposure is finished, the image is transferred to hidden storage cells on the CCD. Image data is then shifted
out line-by-line and transferred to memory. Shifting out non active lines takes tvshift, while shifting out active lines
will consume treadline. The number of active pixels per line will not have any impact on readout speed.

20.1.3.3 CCD Timing

Name Description Pixel clock

20 MHz 40 MHz
ttrig Time from trigger

(internal or external) to exposure start
9.7us 4.85us

ttrans Image transfer time
(move image to readout cells in CCD)

45us 22.5us

treadline time needed to readout a line 65.4us 32.7us
tvshift time needed to shift unused lines away 9.7us 4.85us

twait minimal time to next trigger 116us 58us

texposure Integration time 1us..10s 1us..10s

treadout Image readout time
(move image from readout cells to memory

treadout = (ActiveLines ∗ treadline) + (788 - ActiveLines) ∗ tvshift + treadline

20.1.3.3.1 Timings

Note

In partial scan mode (readout window ysize < 768 lines).

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

208

To calculate the maximum frames per second (FPSmax) you will need following formula (Expose mode: Sequential):

FPS_max = 1

t_trig + t_readout + t_exposure + t_trans + t_wait

(Expose mode: Overlapped):

t_trig + t_readout + t_trans + t_wait < t_exposure: FPS_max = 1

t_exposure

t_trig + t_readout + t_trans + t_wait > t_exposure: FPS_max = 1

t_trig + t_readout + t_trans + t_wait

Example: Frame rate as function of lines & exposure time

Now, when we insert the values using exposure time of, for example, 8000 us, 768 lines and 40MHz pixel clock
(Expose mode: Sequential):

FPS_max = 1

4.85 us + ((768 * 32.7 us) + ((788 - 768) * 4.85 us) + 32.7 us) + 8000 us + 22.5 us + 58 us

= 0.000030004215592290717 1 / us
= 30

Note

The calculator returns the max. frame rate supported by the sensor. Please keep in mind that it will
depend on the interface and the used image format if this frame rate can be transferred.

See also

To find out how to achieve any defined freq. below or equal to the achievable max. freq., please have a look
at Achieve a defined image frequency (HRTC).

20.1.3.4 Reprogramming CCD Timing
Reprogramming the CCD Controller will happen when the following changes occur

• Changing the exposure time

• Changing the capture window

• Changing Trigger Modes

Reprogram time consists of two phases

1. Time needed to send data to the CCD controller depending on what is changed
exposure : abt 2..3ms
window: abt 4..6ms
trigger mode: from 5..90ms,
varies with oldmode/newmode combination

2. Time to initialize (erase) the CCD chip after reprogramming this is fixed, abt 4.5 ms

So for example when reprogramming the capture window you will need (average values)

tregprog = change_window + init_ccd

tregprog = 5ms + 4.5ms

tregprog = 9.5ms

Generated by Doxygen

20.1 A.1 CCD 209

20.1.3.5 CCD Sensor Data
Device Structure

• Interline CCD image sensor

• Image size: Diagonal 6mm (Type 1/3)

• Number of effective pixels: 1025 (H) x 768 (V) approx. 790K pixels

• Total number of pixels: 1077 (H) x 788 (V) approx. 800K pixels

• Chip size: 5.80mm (H) x 4.92mm (V)

• Unit cell size: 4.65um (H) x 4.65um (V)

• Optical black:

– Horizontal (H) direction: Front 3 pixels, rear 40 pixels

– Vertical (V) direction: Front 7 pixels, rear 2 pixels

• Number of dummy bits: Horizontal 29 Vertical 1

• Substrate material: Silicon

20.1.3.5.1 Characteristics
These zone definitions apply to both the color and gray scale version of the sensor.

20.1.3.5.2 Color version

Generated by Doxygen

210

20.1.3.5.3 Gray scale version

20.1.3.6 CCD Signal Processing
The CCD signal is processed with an analog front-end and digitized by an 12 bit analog-to-digital converter
(ADC). The analog front-end contains a programmable gain amplifier which is variable from 0db (gain=0) to 30dB
(gain=255).

The 8 most significant bits of the ADC are captured to the frame buffer. This will give the following transfer function
(based on the 8 bit digital code): Digital_code [lsb] = ccd_signal[V] ∗ 256[lsb/V] ∗ exp(gain[bB]/20) lsb : least
significant bit (smallest digital code change)

Device Feature And Property List

20.1.3.7 Device Feature And Property List

• mvBlueFOX-221G Features

• mvBlueFOX-221C Features

20.1.3.7.1 mvBlueFOX-221G Features

20.1.3.7.2 mvBlueFOX-221C Features

20.1.4 mvBlueFOX-[Model]223 (1.4 Mpix [1360 x 1024])

20.1.4.1 Introduction
The CCD sensor is a highly programmable imaging module which will, for example, enable the following type of
applications

Industrial applications:

• triggered image acquisition with precise control of image exposure start by hardware trigger input.

Generated by Doxygen

20.1 A.1 CCD 211

• image acquisition of fast moving objects due to:

– frame exposure, integrating all pixels at a time in contrast to CMOS imager which typically integrate
line-by-line.

– short shutter time, to get sharp images.

– flash control output to have enough light for short time.

Scientific applications:

• long time exposure for low light conditions.

• optimizing image quality using the variable shutter control.

20.1.4.2 Details of operation
The process of getting an image from the CCD sensor can be separated into three different phases.

20.1.4.2.1 Trigger
When coming out of reset or ready with the last readout the CCD controller is waiting for a Trigger signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

OnFallingEdge Each falling edge of trigger signal acquires one image.

OnRisingEdge Each rising edge of trigger signal acquires one image.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

See also

For detailed description about the trigger modes (https://www.balluff.com/en-de/documentation-for-your-balluff-product
[Impact Acquire API])

• C: TCameraTriggerMode

• C++: mvIMPACT::acquire::TCameraTriggerMode

20.1.4.2.2 Exposure aka Integration
After an active trigger, the exposure phase starts with a maximum jitter of ttrig. If flash illumination is enabled
in software the flash output will be activated exactly while the sensor chip is integrating light. Exposure time is
adjustable by software in increments of treadline.

20.1.4.2.3 Readout
When exposure is finished, the image is transferred to hidden storage cells on the CCD. Image data is then shifted
out line-by-line and transferred to memory. Shifting out non active lines takes tvshift, while shifting out active lines
will consume treadline. The number of active pixels per line will not have any impact on readout speed.

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

212

20.1.4.3 CCD Timing

20.1.4.3.1 Timings

Note

In partial scan mode (readout window ysize < 1024 lines).

To calculate the maximum frames per second (FPSmax) you will need following formula (Expose mode: No overlap):

20.1.4.3.2 Example: Frame rate as function of lines & exposure time Now, when we insert the values using
exposure time of, for example, 8000 us, 1024 lines and 56MHz pixel clock (Expose mode: No overlap):

See also

To find out how to achieve any defined freq. below or equal to the achievable max. freq., please have a look
at Achieve a defined image frequency (HRTC).

20.1.4.4 Reprogramming CCD Timing
Reprogramming the CCD Controller will happen when the following changes occur

• Changing the exposure time

• Changing the capture window

• Changing Trigger Modes

Reprogram time consists of two phases

1. Time needed to send data to the CCD controller depending on what is changed exposure : abt 2..3ms
window: abt 4..6ms trigger mode: from 5..90ms, varies with oldmode/newmode combination

2. Time to initialize (erase) the CCD chip after reprogramming this is fixed, abt 4.5 ms

So for example when reprogramming the capture window you will need (average values)

tregprog = change_window + init_ccd

tregprog = 5ms + 4.5ms

tregprog = 9.5ms

Generated by Doxygen

20.1 A.1 CCD 213

20.1.4.5 CCD Sensor Data
Device Structure

• Interline CCD image sensor

• Image size: Diagonal 8mm (Type 1/2)

• Number of effective pixels: 1392 (H) x 1040 (V) approx. 1.45M pixels

• Total number of pixels: 1434 (H) x 1050 (V) approx. 1.5M pixels

• Chip size: 7.60mm (H) x 6.2mm (V)

• Unit cell size: 4.65um (H) x 4.65um (V)

• Optical black:

– Horizontal (H) direction: Front 2 pixels, rear 40 pixels

– Vertical (V) direction: Front 8 pixels, rear 2 pixels

• Number of dummy bits: Horizontal 20 Vertical 3

• Substrate material: Silicon

20.1.4.5.1 Characteristics
These zone definitions apply to both the color and gray scale version of the sensor.

20.1.4.5.2 Color version

Generated by Doxygen

214

20.1.4.5.3 Gray scale version

20.1.4.6 CCD Signal Processing
The CCD signal is processed with an analog front-end and digitized by an 12 bit analog-to-digital converter
(ADC). The analog front-end contains a programmable gain amplifier which is variable from 0db (gain=0) to 30dB
(gain=255).

The 8 most significant bits of the ADC are captured to the frame buffer. This will give the following transfer function
(based on the 8 bit digital code): Digital_code [lsb] = ccd_signal[V] ∗ 256[lsb/V] ∗ exp(gain[bB]/20) lsb : least
significant bit (smallest digital code change)

Device Feature And Property List

Generated by Doxygen

20.1 A.1 CCD 215

20.1.4.7 Device Feature And Property List

• mvBlueFOX-223G Features

• mvBlueFOX-223C Features

20.1.4.7.1 mvBlueFOX-223G Features

20.1.4.7.2 mvBlueFOX-223C Features

20.1.5 mvBlueFOX-[Model]224 (1.9 Mpix [1600 x 1200])

20.1.5.1 Introduction
The CCD sensor is a highly programmable imaging module which will, for example, enable the following type of
applications

Industrial applications:

• triggered image acquisition with precise control of image exposure start by hardware trigger input.

• image acquisition of fast moving objects due to:

– frame exposure, integrating all pixels at a time in contrast to CMOS imager which typically integrate
line-by-line.

– short shutter time, to get sharp images.

– flash control output to have enough light for short time.

Scientific applications:

• long time exposure for low light conditions.

• optimizing image quality using the variable shutter control.

20.1.5.2 Details of operation
The process of getting an image from the CCD sensor can be separated into three different phases.

20.1.5.2.1 Trigger
When coming out of reset or ready with the last readout the CCD controller is waiting for a Trigger signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

OnFallingEdge Each falling edge of trigger signal acquires one image.

OnRisingEdge Each rising edge of trigger signal acquires one image.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.Generated by Doxygen

216

TriggerSource Impact Acquire TriggerSource GenICam(BCX)

GP-IN0 Line4
GP-IN1 Line5

See also

For detailed description about the trigger modes (https://www.balluff.com/en-de/documentation-for-your-balluff-product
[Impact Acquire API])

• C: TCameraTriggerMode

• C++: mvIMPACT::acquire::TCameraTriggerMode

20.1.5.2.2 Exposure aka Integration
After an active trigger, the exposure phase starts with a maximum jitter of ttrig. If flash illumination is enabled
in software the flash output will be activated exactly while the sensor chip is integrating light. Exposure time is
adjustable by software in increments of treadline.

20.1.5.2.3 Readout
When exposure is finished, the image is transferred to hidden storage cells on the CCD. Image data is then shifted
out line-by-line and transferred to memory. Shifting out non active lines takes tvshift, while shifting out active lines
will consume treadline. The number of active pixels per line will not have any impact on readout speed.

20.1.5.3 CCD Timing

Name Description Pixel clock

20 MHz 40 MHz
ttrig Time from trigger

(internal or external) to exposure start
10.2us 5.1us

ttrans Image transfer time
(move image to readout cells in CCD)

96us 48us

treadline time needed to readout a line 96us 48us

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product

20.1 A.1 CCD 217

tvshift time needed to shift unused lines away 10.2us 5.1us

twait minimal time to next trigger 316us 158us

texposure Exposure time 1us..10s 1us..10s

treadout Image readout time
(move image from readout cells to memory

treadout = (ActiveLines ∗ treadline) + (1248 - ActiveLines) ∗ tvshift + treadline

20.1.5.3.1 Timings

Note

In partial scan mode (readout window ysize < 1200 lines).

To calculate the maximum frames per second (FPSmax) you will need following formula (Expose mode: No overlap):

FPS_max = 1
--
t_trig + t_readout + t_exposure + t_trans + t_wait

(Expose mode: Overlapped):

t_trig + t_readout + t_trans + t_wait < t_exposure: FPS_max = 1

t_exposure

t_trig + t_readout + t_trans + t_wait > t_exposure: FPS_max = 1

t_trig + t_readout + t_trans + t_wait

20.1.5.3.2 Example: Frame rate as function of lines & exposure time Now, when we insert the values using
exposure time of, for example, 8000 us, 1200 lines and 40MHz pixel clock (Expose mode: No overlap):

FPS_max = 1

5.1 us + ((1200 * 48 us) + ((1248 - 1200) * 5.1 us) + 48 us) + 8000 us + 48 us + 158 us

= 0.000015127700483632586 1 / us
= 15.1

20.1.5.3.3 Frame rate calculator

Note

The calculator returns the max. frame rate supported by the sensor. Please keep in mind that it will
depend on the interface and the used image format if this frame rate can be transferred.

See also

To find out how to achieve any defined freq. below or equal to the achievable max. freq., please have a look
at Achieve a defined image frequency (HRTC).

Generated by Doxygen

218

20.1.5.4 Reprogramming CCD Timing
Reprogramming the CCD Controller will happen when the following changes occur

• Changing the exposure time

• Changing the capture window

• Changing Trigger Modes

Reprogram time consists of two phases

1. Time needed to send data to the CCD controller depending on what is changed exposure : abt 2..3ms
window: abt 4..6ms trigger mode: from 5..90ms, varies with oldmode/newmode combination

2. Time to initialize (erase) the CCD chip after reprogramming this is fixed, abt 4.5 ms

So for example when reprogramming the capture window you will need (average values)

tregprog = change_window + init_ccd

tregprog = 5ms + 4.5ms

tregprog = 9.5ms

20.1.5.5 CCD Sensor Data
Device Structure

• Interline CCD image sensor

• Image size: Diagonal 8.923mm (Type 1/1.8)

• Number of effective pixels: 1600 (H) x 1200 (V) approx. 1.92M pixels

• Total number of pixels: 1688 (H) x 1248 (V) approx. 2.11M pixels

• Chip size: 8.50mm (H) x 6.8mm (V)

• Unit cell size: 4.4um (H) x 4.4um (V)

• Optical black:

– Horizontal (H) direction: Front 12 pixels, rear 48 pixels

– Vertical (V) direction: Front 10 pixels, rear 2 pixels

• Number of dummy bits: Horizontal 28 Vertical 1

• Substrate material: Silicon

Generated by Doxygen

20.1 A.1 CCD 219

20.1.5.5.1 Characteristics
These zone definitions apply to both the color and gray scale version of the sensor.

20.1.5.5.2 Color version

20.1.5.5.3 Gray scale version

Generated by Doxygen

220

20.1.5.6 CCD Signal Processing
The CCD signal is processed with an analog front-end and digitized by an 12 bit analog-to-digital converter
(ADC). The analog front-end contains a programmable gain amplifier which is variable from 0db (gain=0) to 30dB
(gain=255).

The 8 most significant bits of the ADC are captured to the frame buffer. This will give the following transfer function
(based on the 8 bit digital code): Digital_code [lsb] = ccd_signal[V] ∗ 256[lsb/V] ∗ exp(gain[bB]/20) lsb : least
significant bit (smallest digital code change)

Device Feature And Property List

20.1.5.7 Device Feature And Property List

• mvBlueFOX-224G Features

• mvBlueFOX-224C Features

20.1.5.7.1 mvBlueFOX-224G Features

20.1.5.7.2 mvBlueFOX-224C Features

20.2 A.2 CMOS

• mvBlueFOX-[Model]200w (0.4 Mpix [752 x 480])

• mvBlueFOX-[Model]202a (1.3 Mpix [1280 x 1024])

• BVS CA-[MLC|IGC]-0012V / mvBlueFOX-[MLC|IGC]202v (1.2 Mpix [1280 x 960])

• mvBlueFOX-[Model]202b (1.2 Mpix [1280 x 960])

• mvBlueFOX-[Model]202d (1.2 Mpix [1280 x 960])

• mvBlueFOX-[Model]205 (5.0 Mpix [2592 x 1944])

Generated by Doxygen

20.2 A.2 CMOS 221

20.2.1 mvBlueFOX-[Model]200w (0.4 Mpix [752 x 480])

20.2.1.1 Introduction
The CMOS sensor module (MT9V034) incorporates the following features:

• resolution to 752 x 480 gray scale or RGB Bayer mosaic

• supports window AOI mode with faster readout

• high dynamic range 110 dB

• programmable analog gain (0..12 dB)

• progressive scan sensor (no interlaced problems!)

• full frame shutter

• programmable readout timing with free capture windows and partial scan

• many trigger modes (free-running, hardware-triggered)

20.2.1.2 Details of operation
The sensor uses a full frame shutter (ShutterMode = "FrameShutter"), i.e. all pixels are reset at the same
time and the exposure commences. It ends with the charge transfer of the voltage sampling.
Furthermore, the sensor offers two different modes of operation:

• free running mode (Overlapping exposure and readout)

• snapshot mode (Sequential exposure and readout)

20.2.1.2.1 Free running mode
In free running mode, the sensor reaches its maximum frame rate. This is done by overlapping erase, exposure and
readout phase. The sensor timing in free running mode is fixed, so there is no control when to start an acquisition.
This mode is used with trigger mode Continuous.

To calculate the maximum frames per second (FPSmax) in free running mode you will need following formula:

FrameTime = (ImageWidth + 61) * ((ImageHeight + 45) / PixelClock)

If exposure time is lower than frame time:

FPS_max = 1

FrameTime

If exposure time is greater than frame time:

FPS_max = 1

ExposureTime

20.2.1.2.2 Snapshot mode
In snapshot mode, the image acquisition process consists off several sequential phases:

20.2.1.2.3 Trigger
Snapshot mode starts with a trigger. This can be either a hardware or a software signal.

The following trigger modes are available:

Generated by Doxygen

222

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

See also

Using external trigger with CMOS sensors

20.2.1.2.4 Erase, exposure and readout
All pixels are light sensitive at the same period of time. The whole pixel core is reset simultaneously and after the
exposure time all pixel values are sampled together on the storage node inside each pixel. The pixel core is read
out line-by-line after exposure.

Note

Exposure and read out cycle is carry-out in serial; that causes that no exposure is possible during read
out.

The step width for the exposure time is 1 us.

Image data is then shifted out line-by-line and transferred to memory.

To calculate the maximum frames per second (FPSmax) in snapshot mode you will need following formula:

FrameTime = (ImageWidth + 61) * ((ImageHeight + 45) / PixelClock)

FPS_max = 1

FrameTime + ExposureTime

AOI PixelClock (MHz) Exposure Time (us) Maximal Frame Rate (fps) PixelFormat

Maximum 40 100 93.7 Mono8
W:608 x H:388 40 100 131.4 Mono8
W:492 x H:314 40 100 158.5 Mono8
W:398 x H:206 40 100 226.7 Mono8

20.2.1.3 Measured frame rates

20.2.1.4 Sensor Data
Device Structure

• Progressive scan CMOS image sensor

• Image size: 4.51(H)x2.88(V)mm (Type 1/3")

• Number of effective pixels: 752 (H) x 480 (V)

• Unit cell size: 6um (H) x 6um (V)

Generated by Doxygen

20.2 A.2 CMOS 223

20.2.1.4.1 Characteristics

20.2.1.4.2 Color version

20.2.1.4.3 Gray scale version

Device Feature And Property List

20.2.1.5 Device Feature And Property List

• mvBlueFOX-200wG Features

• mvBlueFOX-200wC Features

Generated by Doxygen

224

20.2.1.5.1 mvBlueFOX-200wG Features

20.2.1.5.2 mvBlueFOX-200wC Features

20.2.2 mvBlueFOX-[Model]202a (1.3 Mpix [1280 x 1024])

20.2.2.1 Introduction
The CMOS sensor module (MT9M001) incorporates the following features:

• resolution to 1280 x 1024 gray scale

• supports window AOI mode with faster readout

• dynamic range 61dB

• programmable analog gain (0..12dB)

• progressive scan sensor (no interlaced problems!)

• rolling shutter

• programmable readout timing with free capture windows and partial scan

• many trigger modes (free-running, hardware-triggered)

20.2.2.2 Details of operation
The sensor uses following acquisition mode:

• rolling shutter (ShutterMode = "ElectronicRollingShutter").

With the rolling shutter the lines are exposed for the same duration, but at a slightly different point in time.

Note

Moving objects together with a rolling shutter can cause a shear in moving objects.

Furthermore, the sensor offers one operating mode:

• snapshot mode (which means sequential exposure and readout)

20.2.2.2.1 Snapshot mode
In snapshot mode, the image acquisition process consists off several sequential phases:

Generated by Doxygen

20.2 A.2 CMOS 225

20.2.2.2.2 Trigger
Snapshot mode starts with a trigger. This can be either a hardware or a software signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

OnFallingEdge Each falling edge of trigger signal acquires one image.

OnRisingEdge Each rising edge of trigger signal acquires one image.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

OnLowExpose Each falling edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

OnAnyEdge Start the exposure of a frame when the trigger input level changes from high to low or from
low to high.

See also

For detailed description about the trigger modes (https://www.balluff.com/en-de/documentation-for-your-balluff-product
[Impact Acquire API])

• C: TCameraTriggerMode

• C++: mvIMPACT::acquire::TCameraTriggerMode

20.2.2.2.3 Erase, exposure and readout
After the trigger pulse, the complete sensor array is erased. This takes some time, so there is a fix delay from about
285 us between the trigger pulse on digital input 0 and the start of exposure of the first line.
The exact time of exposure start of each line (except the first line) depends on the exposure time and
the position of the line. The exposure of a particular line N is finished when line N is ready for read-
out. Image data is read out line-by-line and transferred to memory (see: https://www.balluff.←↩

com/de-en/whitepapers/cmos-sensors-with-rolling-shutter).
Exposure time is adjustable by software and depends on the image width. To calculate the exposure step size you
will need following formula:

LineDelay = 0

PixelClkPeriod = 1

PixelClk

RowTime = (ImageWidth + 244 + LineDelay) * PixelClkPeriod

RowTime = MinExposurTime = ExposureStepSize

Image data is then shifted out line-by-line and transferred to memory.

To calculate the maximum frames per second (FPSmax) in snapshot mode you will need following formula:

FrameTime = (ImageWidth + 244) * ((ImageHeight + 16) / PixelClock)

FPS_max = 1

FrameTime + ExposureTime

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product
https://www.balluff.com/de-en/whitepapers/cmos-sensors-with-rolling-shutter
https://www.balluff.com/de-en/whitepapers/cmos-sensors-with-rolling-shutter

226

20.2.2.2.4 CMOS Timing in Snapshot mode

20.2.2.3 Sensor Data
Device Structure

• Progressive scan CMOS image sensor

• Image size: 6.66(H)x5.32(V)mm (Type 1/2")

• Number of effective pixels: 1280 (H) x 1024 (V)

• Unit cell size: 5.2um (H) x 5.2um (V)

20.2.2.4 Characteristics

20.2.2.4.1 Gray scale version

Device Feature And Property List

Generated by Doxygen

20.2 A.2 CMOS 227

20.2.2.5 Device Feature And Property List

• mvBlueFOX-202aG Features

20.2.2.5.1 mvBlueFOX-202aG Features

20.2.3 BVS CA-[MLC|IGC]-0012V / mvBlueFOX-[MLC|IGC]202v (1.2 Mpix [1280 x 960])

20.2.3.1 Introduction
The CMOS sensor module (AR0135) incorporates the following features:

• resolution to 1280 x 960 gray scale or RGB Bayer mosaic

• supports window AOI mode with faster readout

• programmable analog gain (0..12 dB)

• progressive scan sensor (no interlaced problems!)

• pipelined global shutter

• programmable readout timing with free capture windows and partial scan

• many trigger modes (free-running, hardware-triggered)

20.2.3.2 Details of operation
The sensor uses a pipelined global snapshot shutter (ShutterMode = "FrameShutter") , i.e. light exposure
takes place on all pixels in parallel, although subsequent readout is sequential.
Therefore the sensor offers two different modes of operation:

• free running mode (Overlapping exposure and readout)

• snapshot mode (Sequential exposure and readout)

20.2.3.2.1 Free running mode
In free running mode, the sensor reaches its maximum frame rate. This is done by overlapping erase, exposure and
readout phase. The sensor timing in free running mode is fixed, so there is no control when to start an acquisition.
This mode is used with trigger mode Continuous.

To calculate the maximum frames per second (FPSmax) in free running mode you will need following formula:

FrameTime = (ImageHeight * (1650 / PixelClock)) + (25 * (1650 / PixelClock))

If exposure time is lower than frame time:

FPS_max = 1

FrameTime

If exposure time is greater than frame time:

Generated by Doxygen

228

FPS_max = 1

ExposureTime

20.2.3.2.2 Snapshot mode
In snapshot mode, the image acquisition process consists off several sequential phases:

20.2.3.2.3 Trigger
Snapshot mode starts with a trigger. This can be either a hardware or a software signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

See also

Using external trigger with CMOS sensors

20.2.3.2.4 Erase, exposure and readout
All pixels are light sensitive at the same period of time. The whole pixel core is reset simultaneously and after the
exposure time all pixel values are sampled together on the storage node inside each pixel. The pixel core is read
out line-by-line after exposure.

Generated by Doxygen

20.2 A.2 CMOS 229

Note

Exposure and read out cycle is carry-out in serial; that causes that no exposure is possible during read
out.

The step width for the exposure time is 1 us.

Image data is then shifted out line-by-line and transferred to memory.

To calculate the maximum frames per second (FPSmax) in snapshot mode you will need following formula:

FrameTime = (ImageHeight * (1650 / PixelClock)) + (25 * (1650 / PixelClock))

FPS_max = 1

FrameTime + ExposureTime

AOI PixelClock (MHz) Exposure Time (us) Maximal Frame Rate (fps) PixelFormat

Maximum 40 100 24.6 Mono8
W:1036 x H:776 40 100 30.3 Mono8
W:838 x H:627 40 100 37.1 Mono8
W:678 x H:598 40 100 38.9 Mono8
W:550 x H:484 40 100 47.6 Mono8

20.2.3.3 Measured frame rates

20.2.3.4 Sensor Data
Device Structure

• CMOS image sensor (Type 1/3")

• Number of effective pixels: 1280 (H) x 960 (V)

• Unit cell size: 3.75um (H) x 3.75um (V)

20.2.3.4.1 Characteristics

20.2.3.4.2 Color version

Generated by Doxygen

230

20.2.3.4.3 Gray scale version

Device Feature And Property List

20.2.3.5 Device Feature And Property List

• BVS CA-[MLC|IGC]-0012VG / mvBlueFOX-[MLC|IGC]202vG Features

• BVS CA-[MLC|IGC]-0012VC / mvBlueFOX-[MLC|IGC]202vC Features

20.2.3.5.1 BVS CA-[MLC|IGC]-0012VG / mvBlueFOX-[MLC|IGC]202vG Features

20.2.3.5.2 BVS CA-[MLC|IGC]-0012VC / mvBlueFOX-[MLC|IGC]202vC Features

Generated by Doxygen

20.2 A.2 CMOS 231

20.2.4 mvBlueFOX-[Model]202b (1.2 Mpix [1280 x 960])

20.2.4.1 Introduction
The CMOS sensor module (MT9M021) incorporates the following features:

• resolution to 1280 x 960 gray scale or RGB Bayer mosaic

• supports window AOI mode with faster readout

• programmable analog gain (0..12 dB)

• progressive scan sensor (no interlaced problems!)

• pipelined global shutter

• programmable readout timing with free capture windows and partial scan

• many trigger modes (free-running, hardware-triggered)

20.2.4.2 Details of operation
The sensor uses a pipelined global snapshot shutter (ShutterMode = "FrameShutter") , i.e. light exposure
takes place on all pixels in parallel, although subsequent readout is sequential.
Therefore the sensor offers two different modes of operation:

• free running mode (Overlapping exposure and readout)

• snapshot mode (Sequential exposure and readout)

20.2.4.2.1 Free running mode
In free running mode, the sensor reaches its maximum frame rate. This is done by overlapping erase, exposure and
readout phase. The sensor timing in free running mode is fixed, so there is no control when to start an acquisition.
This mode is used with trigger mode Continuous.

To calculate the maximum frames per second (FPSmax) in free running mode you will need following formula:

FrameTime = (ImageHeight * (1650 / PixelClock)) + (25 * (1650 / PixelClock))

If exposure time is lower than frame time:

FPS_max = 1

FrameTime

If exposure time is greater than frame time:

FPS_max = 1

ExposureTime

Generated by Doxygen

232

20.2.4.2.2 Snapshot mode
In snapshot mode, the image acquisition process consists off several sequential phases:

20.2.4.2.3 Trigger
Snapshot mode starts with a trigger. This can be either a hardware or a software signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.

See also

Using external trigger with CMOS sensors

20.2.4.2.4 Erase, exposure and readout
All pixels are light sensitive at the same period of time. The whole pixel core is reset simultaneously and after the
exposure time all pixel values are sampled together on the storage node inside each pixel. The pixel core is read
out line-by-line after exposure.

Note

Exposure and read out cycle is carry-out in serial; that causes that no exposure is possible during read
out.

The step width for the exposure time is 1 us.

Image data is then shifted out line-by-line and transferred to memory.

To calculate the maximum frames per second (FPSmax) in snapshot mode you will need following formula:

Generated by Doxygen

20.2 A.2 CMOS 233

FrameTime = (ImageHeight * (1650 / PixelClock)) + (25 * (1650 / PixelClock))

FPS_max = 1

FrameTime + ExposureTime

AOI PixelClock (MHz) Exposure Time (us) Maximal Frame Rate (fps) PixelFormat

Maximum 40 100 24.6 Mono8
W:1036 x H:776 40 100 30.3 Mono8
W:838 x H:627 40 100 37.1 Mono8
W:678 x H:598 40 100 38.9 Mono8
W:550 x H:484 40 100 47.6 Mono8

20.2.4.3 Measured frame rates

20.2.4.4 Sensor Data
Device Structure

• CMOS image sensor (Type 1/3")

• Number of effective pixels: 1280 (H) x 960 (V)

• Unit cell size: 3.75um (H) x 3.75um (V)

20.2.4.4.1 Characteristics

20.2.4.4.2 Color version

Generated by Doxygen

234

20.2.4.4.3 Gray scale version

Device Feature And Property List

20.2.4.5 Device Feature And Property List

• mvBlueFOX-202bG Features

• mvBlueFOX-202bC Features

20.2.4.5.1 mvBlueFOX-202bG Features

20.2.4.5.2 mvBlueFOX-202bC Features

20.2.5 mvBlueFOX-[Model]202d (1.2 Mpix [1280 x 960])

20.2.5.1 Introduction
The CMOS sensor module (MT9M034) incorporates the following features:

• resolution to 1280 x 960 gray scale or RGB Bayer mosaic

• supports window AOI mode with faster readout

• programmable analog gain (0..12 dB)

• progressive scan sensor (no interlaced problems!)

• high dynamic range 115 dB (with gray scale version)

• rolling shutter

• programmable readout timing with free capture windows and partial scan

• many trigger modes (free-running, hardware-triggered)

Generated by Doxygen

20.2 A.2 CMOS 235

20.2.5.2 Details of operation
The sensor uses following acquisition mode:

• rolling shutter (ShutterMode = "ElectronicRollingShutter")

With the rolling shutter the lines are exposed for the same duration, but at a slightly different point in time.

Note

Moving objects together with a rolling shutter can cause a shear in moving objects.

Furthermore, the sensor offers following operating modes:

• free running mode (Overlapping exposure and readout)

• snapshot mode (Sequential exposure and readout)

20.2.5.2.1 Free running mode
In free running mode, the sensor reaches its maximum frame rate. This is done by overlapping erase, exposure and
readout phase. The sensor timing in free running mode is fixed, so there is no control when to start an acquisition.
This mode is used with trigger mode Continuous.

To calculate the maximum frames per second (FPSmax) in free running mode you will need following formula:

FrameTime = (ImageHeight * (1650 / PixelClock)) + (25 * (1650 / PixelClock))

If exposure time is lower than frame time:

FPS_max = 1

FrameTime

If exposure time is greater than frame time:

FPS_max = 1

ExposureTime

20.2.5.2.2 Snapshot mode
In snapshot mode, the image acquisition process consists off several sequential phases:

20.2.5.2.3 Trigger
Snapshot mode starts with a trigger. This can be either a hardware or a software signal.

The following trigger modes are available:

Mode Description

Continuous Free running, no external trigger signal needed.

OnLowLevel As long as trigger signal is Low camera acquires images with own timing.

OnHighLevel As long as trigger signal is High camera acquires images with own timing.
Generated by Doxygen

236

See also

Using external trigger with CMOS sensors

20.2.5.2.4 Erase, exposure and readout
All pixels are light sensitive at the same period of time. The whole pixel core is reset simultaneously and after the
exposure time all pixel values are sampled together on the storage node inside each pixel. The pixel core is read
out line-by-line after exposure.

Note

Exposure and read out cycle is carry-out in serial; that causes that no exposure is possible during read
out.

The step width for the exposure time is 1 us.

Image data is then shifted out line-by-line and transferred to memory.

To calculate the maximum frames per second (FPSmax) in snapshot mode you will need following formula:

FrameTime = (ImageHeight * (1650 / PixelClock)) + (25 * (1650 / PixelClock))

FPS_max = 1

FrameTime + ExposureTime

AOI PixelClock (MHz) Exposure Time (us) Maximal Frame Rate (fps) PixelFormat

Maximum 40 100 24.6 Mono8
W:1036 x H:776 40 100 30.3 Mono8
W:838 x H:627 40 100 37.1 Mono8
W:678 x H:598 40 100 38.9 Mono8
W:550 x H:484 40 100 47.6 Mono8

20.2.5.3 Measured frame rates

20.2.5.4 Sensor Data
Device Structure

• CMOS image sensor (Type 1/3")

• Number of effective pixels: 1280 (H) x 960 (V)

• Unit cell size: 3.75um (H) x 3.75um (V)

20.2.5.4.1 Characteristics

Generated by Doxygen

20.2 A.2 CMOS 237

20.2.5.4.2 Color version

20.2.5.4.3 Gray scale version

Device Feature And Property List

20.2.5.5 Device Feature And Property List

• mvBlueFOX-ML/IGC202dG Features

• mvBlueFOX-ML/IGC202dC Features

Generated by Doxygen

238

20.2.5.5.1 mvBlueFOX-ML/IGC202dG Features

20.2.5.5.2 mvBlueFOX-ML/IGC202dC Features

20.2.6 mvBlueFOX-[Model]205 (5.0 Mpix [2592 x 1944])

20.2.6.1 Introduction
The CMOS sensor module (MT9P031) incorporates the following features:

• resolution to 2592 x 1944 gray scale or RGB Bayer mosaic

• supports window AOI mode with faster readout

• programmable analog gain (0..32dB)

• progressive scan sensor (no interlaced problems!)

• rolling shutter / global reset release

• programmable readout timing with free capture windows and partial scan

• many trigger modes (free-running, hardware-triggered)

20.2.6.2 Details of operation
The sensor uses two acquisition modes:

• rolling shutter (ShutterMode = "ElectronicRollingShutter") and

• global reset release shutter (ShutterMode = "GlobalResetRelease").

With the rolling shutter the lines are exposed for the same duration, but at a slightly different point in time:

Note

Moving objects together with a rolling shutter can cause a shear in moving objects.

The global reset release shutter, which is only available in triggered operation, starts the exposure of all rows
simultaneously and the reset to each row is released simultaneously, too. However, the readout of the lines is equal
to the readout of the rolling shutter: line by line:

Generated by Doxygen

20.2 A.2 CMOS 239

Note

This means, the bottom lines of the sensor will be exposed to light longer! For this reason, this mode will
only make sense, if there is no extraneous light and the flash duration is shorter or equal to the exposure
time.

Furthermore, the sensor offers two operating modes:

• free running mode (Overlapping exposure and readout)

• snapshot mode (Sequential exposure and readout) in triggered operation

20.2.6.2.1 Free running mode
In free running mode, the sensor reaches its maximum frame rate. This is done by overlapping erase, exposure and
readout phase. The sensor timing in free running mode is fixed, so there is no control when to start an acquisition.
This mode is used with trigger mode Continuous.

To calculate the maximum frames per second (FPSmax) in free running mode you will need following formula:

FrameTime = (ImageWidth + 900) * ((ImageHeight + 9) / PixelClock)

If exposure time is lower than frame time:

FPS_max = 1

FrameTime

If exposure time is greater than frame time:

FPS_max = 1

ExposureTime

20.2.6.2.2 Snapshot mode
In snapshot mode, the image acquisition process consists off several sequential phases:

20.2.6.2.3 Trigger

Snapshot mode starts with a trigger. This can be either a hardware or a software signal.

The following trigger modes are available:

Generated by Doxygen

240

Mode Description

Continuous Free running, no external trigger signal needed.

OnDemand Image acquisition triggered by command (software trigger).

OnLowLevel Start an exposure of a frame as long as the trigger input is below the trigger threshold .

OnHighLevel Start an exposure of a frame as long as the trigger input is above the trigger threshold.

OnHighExpose Each rising edge of trigger signal acquires one image, exposure time corresponds to pulse
width.

See also

Using external trigger with CMOS sensors

20.2.6.2.4 Erase, exposure and readout
All pixels are light sensitive at the same period of time. The whole pixel core is reset simultaneously and after the
exposure time all pixel values are sampled together on the storage node inside each pixel. The pixel core is read
out line-by-line after exposure.

Note

Exposure and read out cycle is carry-out in serial; that causes that no exposure is possible during read
out.

The step width for the exposure time is 1 us.

Image data is then shifted out line-by-line and transferred to memory.

To calculate the maximum frames per second (FPSmax) in snapshot mode you will need following formula:

FrameTime = (ImageWidth + 900) * ((ImageHeight + 9) / PixelClock)

FPS_max = 1

(FrameTime + ExposureTime)

20.2.6.2.5 Use Cases
As mentioned before, "Global reset release" will only make sense, if a flash is used which is brighter than the
ambient light. The settings in ImpactControlCenter will look like this:

In this case, DigOut0 gets a high signal as long as the exposure time (which is synchronized with the GlobalReset←↩

Release). This signal can start a flash light.

AOI PixelClock (MHz) Exposure Time (us) Maximal Frame Rate (fps) PixelFormat

Maximum 40 100 5.9 Mono8
W:2098 x H:1574 40 100 8.4 Mono8
W:1696 x H:1272 40 100 12.0 Mono8
W:1376 x H:1032 40 100 16.9 Mono8
W:1104 x H:832 40 100 23.7 Mono8
W:800 x H:616 40 100 32 Mono8

Generated by Doxygen

20.2 A.2 CMOS 241

20.2.6.3 Measured frame rates

20.2.6.4 Sensor Data
Device Structure

• Progressive scan CMOS image sensor

• Image size: 5.70(H)x4.28(V)mm (Type 1/2.5")

• Number of effective pixels: 2592 (H) x 1944 (V)

• Unit cell size: 2.2um (H) x 2.2um (V)

20.2.6.4.1 Characteristics

20.2.6.4.2 Color version

20.2.6.4.3 Gray scale version

Device Feature And Property List

Generated by Doxygen

242

20.2.6.5 Device Feature And Property List

• mvBlueFOX-205G Features

• mvBlueFOX-205C Features

20.2.6.5.1 mvBlueFOX-205G Features

20.2.6.5.2 mvBlueFOX-205C Features

21 Appendix B. Product Comparison

22 Appendix C. Tested ARM platforms

Balluff/MATRIX VISION devices can run on ARM-based Linux platforms without limitations regarding available fea-
ture sets or API functions. However, each platform may have its own limits in terms of achievable data throughput,
RAM or bus speeds. Apart from that, each platform may also come with its own specific set of challenges. Therefore,
certain modifications may need to be adapted in order to get your devices run at maximum performance.

This chapter contains test results from different ARM platforms, as well as the specific information on each platform,
especially changes that need to be applied to achieve better performance.

The following platforms have been tested by Balluff:

System ARM-Architecture
Technology Test Results

PerformanceSuitable for More information
USB2.←↩

0
USB3.←↩

0
GigE 10GigE PCIe

NVIDIA Jetson AGX XavierNVIDIA
Carmel
ARMv8.←↩

2

Demanding
Applica-
tions

nvidia.←↩

com

NVIDIA Jetson Xavier NXNVIDIA
Carmel
ARMv8.←↩

2

Demanding
Applica-
tions

nvidia.←↩

com

NVIDIA Jetson NanoARM
Cortex-←↩

A57

Mid-←↩

Range
Applica-
tions

nvidia.←↩

com

NVIDIA Jetson TX2NVIDIA
Denver 2
and ARM
Cortex-←↩

A57

Demanding
Applica-
tions

nvidia.←↩

com

Raspberry Pi 4ARM
Cortex-←↩

A72

Price
Sensitive
Projects

raspberrypi.←↩

org

Raspberry Pi Compute Module 4ARM
Cortex-←↩

A72

Price
Sensitive
Projects

raspberrypi.←↩

org

i.MX8M Mini ARM
Cortex-←↩

A53

Mid-←↩

Range
Applica-
tions

nxp.com

Generated by Doxygen

22.1 C.1 ARM64 based devices 243

The system delivers good performance with this device.

The system doesn’t work with this device.

The developer kit doesn’t work with this device because it provides no PCI Express interface.

The system delivers limited performance with this device.

The system hasn’t been tested yet with this device.

Appendices:

• C.1 ARM64 based devices

• C.2 ARMhf based devices

22.1 C.1 ARM64 based devices

• NVIDIA Jetson AGX Xavier

• NVIDIA Jetson Xavier NX

• NVIDIA Jetson Nano

• NVIDIA Jetson TX2

• Raspberry Pi Compute Module 4

• i.MX8M Mini

22.1.1 NVIDIA Jetson AGX Xavier

CPU NVIDIA Carmel ARMv8.2 @ 2.26GHz
Cores 8
RAM 32GB
USB2.0 Interfaces 4
USB3.1 Interfaces 3
Ethernet 10/100/1000 MBit
PCIe 1x8 + 1x4 + 1x2 + 2x1

Gen 4.0

22.1.1.1 General

Note

The above table describes the specification of the NVIDIA Jetson AGX Xavier Developer Kit.

The following tests were conducted on JetPack 4.6.0.

22.1.1.2 Test Setup

Generated by Doxygen

244

Test setup

22.1.1.3 Additional Settings Impact Acquire - System Settings

Setting Value

Request Count 20

Note

A Request in the Impact Acquire API represents a buffer where an image with the current device
configuration is captured into. In order to avoid losing images at a high FPS, it's recommended to increase
the number of these request buffers (i.e. ' RequestCount' in ' SystemSettings', by default the
value is set to 4 for Balluff USB2.0 cameras), so that the driver can continue capturing image data even
if the host application is sometimes slower at processing an image than the camera at transferring one.
As a rule of thumb, the number of capture buffers should be configured roughly within the range of FPS/2
and FPS/5. In the following test, the RequestCount is set to 20 which is roughly FPS/5.

Camera Resolution Pixel Format Frame Rate [Frames/s] Bandwidth [MB/s] CPU Load

mvBlueFOX-IGC200wC 752 x 480 Mono8 93.71 33.88 ∼16%

22.1.1.4 Benchmarks

Generated by Doxygen

22.1 C.1 ARM64 based devices 245

22.1.2 NVIDIA Jetson Xavier NX

CPU NVIDIA Carmel ARMv8.2 @ 1.9GHz
Cores 6
RAM 8GB
USB3.1 Interfaces 4
Ethernet 10/100/1000 MBit
PCIe 1x1 + 1x4

Gen 3.0

22.1.2.1 General

Note

The above table describes the specification of the NVIDIA Jetson Xavier NX Developer Kit.

The following tests were conducted on JetPack 4.6.0.

22.1.2.2 Test Setup

Test setup

22.1.2.3 Additional Settings Impact Acquire - System Settings

Setting Value

Request Count 20
Generated by Doxygen

246

Note

A Request in the Impact Acquire API represents a buffer where an image with the current device
configuration is captured into. In order to avoid losing images at a high FPS, it's recommended to increase
the number of these request buffers (i.e. ' RequestCount' in ' SystemSettings', by default the
value is set to 4 for Balluff USB2.0 cameras), so that the driver can continue capturing image data even
if the host application is sometimes slower at processing an image than the camera at transferring one.
As a rule of thumb, the number of capture buffers should be configured roughly within the range of
FPS/2 and FPS/5. For example, if the capturing FPS is around 100Hz, it is recommended to set the
RequestCount to 20 which is roughly FPS/5.

Camera Resolution Pixel Format Frame Rate
[Frames/s]

Bandwidth [MB/s] CPU Load

mvBlueFOX-←↩

IGC202dC
1280 x 960 BayerRG8 (on

camera) -> RGB8
(on host)

24.61 30.26 ∼25%

22.1.2.4 Benchmarks

22.1.3 NVIDIA Jetson Nano

CPU Cortex-A57 @ 1.43 GHz
Cores 4
RAM 4GB
USB2.0 Interfaces 1
USB3.0 Interfaces 4
Ethernet 10/100/1000 MBit
PCIe x1/x2/x4

Gen 2.0

22.1.3.1 General

Note

The above table describes the specification of the NVIDIA Jetson Nano Developer Kit.

22.1.3.2 Additional Settings Impact Acquire - System Settings

Setting Value

Request Count 20

Note

A Request in the Impact Acquire API represents a buffer where an image with the current device
configuration is captured into. In order to avoid losing images at a high FPS, it's recommended to increase
the number of these request buffers (i.e. ' RequestCount' in ' SystemSettings', by default the
value is set to 4 for Balluff USB2.0 cameras), so that the driver can continue capturing image data even
if the host application is sometimes slower at processing an image than the camera at transferring one.
As a rule of thumb, the number of capture buffers should be configured roughly within the range of FPS/2
and FPS/5. In the following test, the RequestCount is set to 20 which is roughly FPS/5.

Generated by Doxygen

22.1 C.1 ARM64 based devices 247

Camera Resolution Pixel Format Frame Rate [Frames/s] Bandwidth [MB/s] CPU Load

mvBlueFOX-IGC200wG 752 x 480 Mono8 93.72 33.88 ∼31%

22.1.3.3 Benchmarks

22.1.3.4 Remarks

22.1.3.4.1 Choose the right power supply The Jetson Nano has 2 power supply possibilities: via the micro-←↩

USB connection or via the Barrel Jack connection.

The power (by default 10W) via the micro-USB connector is not sufficient if peripherals (e.g. keyboard, mouse,
cameras, etc...) are connected. To avoid the system from throttling due to over-current, please supply the board
with power through the Barrel Jack connector (4A@5V), when powering the USB/USB3 camera through the USB
bus.

22.1.4 NVIDIA Jetson TX2

CPU ARM Cortex-A57 @ 2GHz
NVIDIA Denver2 @ 2GHz

Cores 4
2

RAM 8GB
USB2.0 Interfaces 1
USB3.0 Interfaces 1
Ethernet 10/100/1000 MBit

PCIe 1x4 + 1x1 | 2x1 + 1x2
Gen 2.0

22.1.4.1 General

Note

The above table describes the specification of the NVIDIA Jetson TX2 Developer Kit.

22.1.4.2 Test Setup

Generated by Doxygen

248

Test setup

22.1.4.3 Additional Settings Impact Acquire - System Settings

Setting Value

Request Count 20

Note

A Request in the Impact Acquire API represents a buffer where an image with the current device
configuration is captured into. In order to avoid losing images at a high FPS, it's recommended to increase
the number of these request buffers (i.e. ' RequestCount' in ' SystemSettings', by default the
value is set to 4 for Balluff USB2.0 cameras), so that the driver can continue capturing image data even
if the host application is sometimes slower at processing an image than the camera at transferring one.
As a rule of thumb, the number of capture buffers should be configured roughly within the range of FPS/2
and FPS/5. In the following test, the RequestCount is set to 20 which is roughly FPS/5.

Camera Resolution Pixel Format Frame Rate [Frames/s] Bandwidth [MB/s] CPU Load

mvBlueFOX-IGC200wG 752 x 480 Mono8 94.72 33.88 ∼32%

22.1.4.4 Benchmarks

Generated by Doxygen

22.1 C.1 ARM64 based devices 249

22.1.5 Raspberry Pi Compute Module 4

22.1.5.1 General The Raspberry Pi Compute Module 4 is a well priced platform regarding its performance.

CPU Cortex-A72 @ 1500MHz
Cores 4
RAM 4 GB
USB2.0 Interfaces 1
Ethernet 10/100/1000 MBit
PCIe 1 x 1 Lane

Gen 2.0

Note

The above table describes the specification of the 4GB version Raspberry Pi Compute Module 4.

The Raspberry Pi Compute Module 4 IO Board is used as carrier board for the following test.

Since the Raspberry Pi Compute Module uses the same processor as the Raspberry Pi 4, it is a stripped-down
module version of the Raspberry Pi 4. Please refer to Raspberry Pi 4 for benchmark results.

22.1.6 i.MX8M Mini

CPU ARM Cortex®-A53 @ 1.6GHz
Cores 4
RAM 1 GB
USB2.0 Interfaces 2
USB3.0 Interfaces None
Ethernet 1000 MBit
PCIe 1 x 1 Lane

Gen 2.0

22.1.6.1 General The carrier-board used in this test: MBa8Mx from TQ-Systems GmbH

Note

If you are looking for more information and guidance about installing Impact Acquire driver pack-
ages via the Yocto Project, please choose an API-manual suited for your programming lan-
guage and then go to chapter "Installation From Private Setup Routines -> Embedded Linux
-> Yocto Project". All API-manuals can be found under https://www.balluff.←↩

com/en-de/documentation-for-your-balluff-product.

22.1.6.2 Test Setup

Generated by Doxygen

https://www.balluff.com/en-de/documentation-for-your-balluff-product
https://www.balluff.com/en-de/documentation-for-your-balluff-product

250

Test setup

22.1.6.3 Additional Settings Impact Acquire - System Settings

Setting Value

Request Count 20

Note

A Request in the Impact Acquire API represents a buffer where an image with the current device
configuration is captured into. In order to avoid losing images at a high FPS, it's recommended to increase
the number of these request buffers (i.e. ' RequestCount' in ' SystemSettings', by default the
value is set to 4 for Balluff USB2.0 cameras), so that the driver can continue capturing image data even
if the host application is sometimes slower at processing an image than the camera at transferring one.
As a rule of thumb, the number of capture buffers should be configured roughly within the range of FPS/2
and FPS/5. In the following test, the RequestCount is set to 20 which is roughly FPS/5.

Camera Resolution Pixel Format Frame Rate
[Frames/s]

Bandwidth [MB/s] CPU Load (av-
eraged over 4
cores)

mvBlueFOX-←↩

MLC200WG
752 x 480 Mono8 93.7 33.8 ∼6%

22.1.6.4 Benchmarks

Generated by Doxygen

22.2 C.2 ARMhf based devices 251

22.2 C.2 ARMhf based devices

• Raspberry Pi 4

22.2.1 Raspberry Pi 4

22.2.1.1 General The Raspberry Pi 4 is a well priced platform regarding its performance.

CPU Cortex-A72 @ 1500MHz
Cores 4
RAM 1/2/4/8 GB
USB2.0 Interfaces 2
USB3.0 Interfaces 2
Ethernet 10/100/1000 MBit

Note

For the following benchmark the 4GB version of the Raspberry Pi 4 with Raspbian OS has been used.

22.2.1.2 Test Setup

Test setup

Generated by Doxygen

252

22.2.1.3 Additional Settings Impact Acquire - System Settings

Generated by Doxygen

22.2 C.2 ARMhf based devices 253

Setting Value

Request Count 20

Note

A Request in the Impact Acquire API represents a buffer where an image with the current device
configuration is captured into. In order to avoid losing images at a high FPS, it's recommended to increase
the number of these request buffers (i.e. ' RequestCount' in ' SystemSettings', by default the
value is set to 4 for Balluff USB2.0 cameras), so that the driver can continue capturing image data even
if the host application is sometimes slower at processing an image than the camera at transferring one.
As a rule of thumb, the number of capture buffers should be configured roughly within the range of FPS/2
and FPS/5. In the following test, the RequestCount is set to 20 which is roughly FPS/5.

Camera Resolution Pixel Format Frame Rate [Frames/s] Bandwidth [MB/s] CPU Load

mvBlueFOX-IGC200wG 752 x 480 Mono8 93.72 33.88 ∼29%

22.2.1.4 Benchmarks

Generated by Doxygen

	1 About this manual
	1.1 Goal of the manual
	1.2 Contents of the manual

	2 Imprint
	3 Legal Notice
	3.1 Firmware And Device Driver
	3.1.1 cJSON
	3.1.2 Unity

	3.2 Doxygen
	3.3 Impact Acquire SDK

	4 Revisions
	5 Symbols and Conventions
	5.1 Explanation of the warnings

	6 Important Information
	6.1 High-Speed USB design guidelines
	6.2 European Union Declaration of Conformity statement
	6.3 Legal notice
	6.3.1 For customers in the U.S.A.
	6.3.2 For customers in Canada
	6.3.3 Pour utilisateurs au Canada

	7 Introduction
	7.1 Order code nomenclature
	7.1.1 mvBlueFOX
	7.1.2 mvBlueFOX-M
	7.1.3 BVS CA-IGC
	7.1.4 BVS CA-MLC
	7.1.5 Ordering code samples

	7.2 What's inside and accessories

	8 Quickstart
	8.1 System Requirements
	8.1.1 Supported Operating Systems

	8.2 Installing the Impact Acquire driver
	8.2.1 Windows
	8.2.2 Linux

	8.3 Connecting The Camera
	8.4 Driver concept
	8.4.1 NeuroCheck Support
	8.4.2 VisionPro Support
	8.4.3 HALCON Support
	8.4.4 LabVIEW Support
	8.4.5 DirectShow Support
	8.4.6 Micro-Manager Support

	8.5 Relationship between driver, firmware and FPGA file
	8.5.1 FPGA
	8.5.2 Firmware

	8.6 About Settings
	8.7 Optimizing USB Performance
	8.7.1 Checklist for Windows
	8.7.2 Checklist for Linux

	8.8 Using USB2 Cameras In A Docker Container
	8.8.1 Host Preparation
	8.8.2 Building A Docker Image
	8.8.3 Starting The Docker Container
	8.8.4 Validation

	9 Technical Data
	9.1 Power supply
	9.2 Standard version (mvBlueFOX-xxx)
	9.2.1 Dimensions and connectors
	9.2.2 LED states

	9.3 Board-level version (mvBlueFOX-Mxxx)
	9.3.1 Dimensions and connectors
	9.3.2 LED states
	9.3.3 Accessories mvBlueFOX-Mxxx

	9.4 Single-board version (BVS CA-MLC)
	9.4.1 Typical Power consumption @ 5V
	9.4.2 Dimensions and connectors
	9.4.3 LED states
	9.4.4 Assembly variants

	9.5 Single-board version with housing (BVS CA-IGC)
	9.5.1 Dimensions and connectors
	9.5.2 LED states
	9.5.3 Positioning tolerances of sensor chip

	9.6 Summary of components
	9.6.1 Summary of available digital I/O's

	10 Sensor Overview
	10.1 CCD sensors
	10.2 CMOS sensors
	10.3 Output sequence of color sensors (RGB Bayer)
	10.4 Bilinear interpolation of color sensors (RGB Bayer)

	11 Filters
	11.1 Hot mirror filter
	11.2 Cold mirror filter
	11.3 Glass filter

	12 GUI tools
	12.1 Introduction
	12.2 ImpactControlCenter
	12.3 DeviceConfigure
	12.4 IPConfigure
	12.5 GigEConfigure

	13 HRTC - Hardware Real-Time Controller
	13.1 Introduction
	13.1.1 Operating codes

	13.2 How to use the HRTC

	14 Developing applications using the Impact Acquire SDK
	15 DirectShow Interface
	15.1 Supported Interfaces
	15.1.1 C++ Example Code Using the IKsPropertySet Interface

	15.2 Logging
	15.3 Setting up Devices For DirectShow Usage
	15.3.1 Registering Devices
	15.3.2 Renaming Devices

	15.4 DirectShow-based Applications

	16 Troubleshooting
	16.1 Accessing log files
	16.1.1 Windows
	16.1.2 Linux

	16.2 VLC Media Player Issues
	16.2.1 Wrong Colors in the VLC Media Player

	17 Error code list
	18 Glossary
	19 Use Cases
	19.1 Introducing acquisition / recording possibilities
	19.1.1 Generating very long exposure times
	19.1.2 Using Video Stream Recording

	19.2 Improving the acquisition / image quality
	19.2.1 Correcting image errors of a sensor
	19.2.2 Optimizing the color/luminance fidelity of the camera
	19.2.3 Working With Gain And Black-Level Values Per Color Channel

	19.3 Saving data on the device
	19.3.1 Creating user data entries

	19.4 Working with several cameras simultaneously
	19.4.1 Using 2 BVS CA-MLC cameras in Master-Slave mode
	19.4.2 Synchronize the cameras to expose at the same time

	19.5 Working with HDR (High Dynamic Range Control)
	19.5.1 Adjusting sensor of camera models with onsemi MT9V034
	19.5.2 Adjusting sensor of camera models with onsemi MT9M034

	19.6 Working with I2C devices
	19.6.1 Working with the I2C interface (I2C Control)
	19.6.2 Using BVS CA-MLC with motorized lenses (MotorFocusControl)

	19.7 Working with LUTs
	19.7.1 Introducing LUTs

	19.8 Working with triggers
	19.8.1 Using external trigger with CMOS sensors

	19.9 Working with 3rd party tools
	19.9.1 Using VLC Media Player
	19.9.2 Using USB2 Cameras In A Docker Container

	19.10 Working with the Hardware Real-Time Controller (HRTC)
	19.10.1 Achieve a defined image frequency (HRTC)
	19.10.2 Delay the external trigger signal (HRTC)
	19.10.3 Creating double acquisitions (HRTC)
	19.10.4 Take two images after one external trigger (HRTC)
	19.10.5 Take two images with different expose times after an external trigger (HRTC)
	19.10.6 Edge controlled triggering (HRTC)
	19.10.7 Delay the expose start of the following camera (HRTC)

	20 Appendix A. Specific Camera / Sensor Data
	20.1 A.1 CCD
	20.1.1 mvBlueFOX-[Model]220 (0.3 Mpix [640 x 480])
	20.1.2 mvBlueFOX-[Model]220a (0.3 Mpix [640 x 480])
	20.1.3 mvBlueFOX-[Model]221 (0.8 Mpix [1024 x 768])
	20.1.4 mvBlueFOX-[Model]223 (1.4 Mpix [1360 x 1024])
	20.1.5 mvBlueFOX-[Model]224 (1.9 Mpix [1600 x 1200])

	20.2 A.2 CMOS
	20.2.1 mvBlueFOX-[Model]200w (0.4 Mpix [752 x 480])
	20.2.2 mvBlueFOX-[Model]202a (1.3 Mpix [1280 x 1024])
	20.2.3 BVS CA-[MLC"026A30C IGC]-0012V / mvBlueFOX-[MLC"026A30C IGC]202v (1.2 Mpix [1280 x 960])
	20.2.4 mvBlueFOX-[Model]202b (1.2 Mpix [1280 x 960])
	20.2.5 mvBlueFOX-[Model]202d (1.2 Mpix [1280 x 960])
	20.2.6 mvBlueFOX-[Model]205 (5.0 Mpix [2592 x 1944])

	21 Appendix B. Product Comparison
	22 Appendix C. Tested ARM platforms
	22.1 C.1 ARM64 based devices
	22.1.1 NVIDIA Jetson AGX Xavier
	22.1.2 NVIDIA Jetson Xavier NX
	22.1.3 NVIDIA Jetson Nano
	22.1.4 NVIDIA Jetson TX2
	22.1.5 Raspberry Pi Compute Module 4
	22.1.6 i.MX8M Mini

	22.2 C.2 ARMhf based devices
	22.2.1 Raspberry Pi 4

